ON THE TOPOLOGICAL INDICES OF ZERO DIVISOR GRAPHS OF SOME COMMUTATIVE RINGS
The zero divisor graph is the most basic way of representing an algebraic structure as a graph. For any commutative ring R, each element is a vertex on the zero divisor graph and two vertices are defined as adjacent if and only if the product of those vertices equals zero. In this research, we deter...
Published in: | Journal of Applied Mathematics and Informatics |
---|---|
Main Author: | Maulana F.; Aditya M.Z.; Suwastika E.; Muchtadi-Alamsyah I.; Alimon N.I.; Sarmin N.H. |
Format: | Article |
Language: | English |
Published: |
Korean Society for Computational and Applied Mathematics
2024
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195682736&doi=10.14317%2fjami.2024.663&partnerID=40&md5=47ed7e9d3a031a3c215b98446c964ec3 |
Similar Items
-
General zeroth-order randić index of the zero divisor graph for some commutative rings
by: Semil at Ismail G.; Sarmin N.H.; Alimon N.I.; Maulana F.
Published: (2024) -
The first Zagreb index of the zero divisor graph for the ring of integers modulo 2kq
by: Ismail G.S.; Sarmin N.H.; Alimon N.I.; Maulana F.
Published: (2024) -
The First Zagreb Index of the Zero Divisor Graph for the Ring of Integers Modulo Power of Primes
by: Semil Ismail G.; Sarmin N.H.; Alimon N.I.; Maulana F.
Published: (2023) -
General zeroth-order randić index of zero divisor graph for the ring of integers modulo pn
by: Ismail G.S.; Sarmin N.H.; Alimon N.I.; Maulana F.
Published: (2023) -
ON THE SZEGED INDEX AND ITS NON-COMMUTING GRAPH
by: Alimon N.I.; Sarmin N.H.; Erfanian A.
Published: (2023)