ON THE TOPOLOGICAL INDICES OF ZERO DIVISOR GRAPHS OF SOME COMMUTATIVE RINGS

The zero divisor graph is the most basic way of representing an algebraic structure as a graph. For any commutative ring R, each element is a vertex on the zero divisor graph and two vertices are defined as adjacent if and only if the product of those vertices equals zero. In this research, we deter...

Full description

Bibliographic Details
Published in:Journal of Applied Mathematics and Informatics
Main Author: Maulana F.; Aditya M.Z.; Suwastika E.; Muchtadi-Alamsyah I.; Alimon N.I.; Sarmin N.H.
Format: Article
Language:English
Published: Korean Society for Computational and Applied Mathematics 2024
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195682736&doi=10.14317%2fjami.2024.663&partnerID=40&md5=47ed7e9d3a031a3c215b98446c964ec3
id 2-s2.0-85195682736
spelling 2-s2.0-85195682736
Maulana F.; Aditya M.Z.; Suwastika E.; Muchtadi-Alamsyah I.; Alimon N.I.; Sarmin N.H.
ON THE TOPOLOGICAL INDICES OF ZERO DIVISOR GRAPHS OF SOME COMMUTATIVE RINGS
2024
Journal of Applied Mathematics and Informatics
42
3
10.14317/jami.2024.663
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195682736&doi=10.14317%2fjami.2024.663&partnerID=40&md5=47ed7e9d3a031a3c215b98446c964ec3
The zero divisor graph is the most basic way of representing an algebraic structure as a graph. For any commutative ring R, each element is a vertex on the zero divisor graph and two vertices are defined as adjacent if and only if the product of those vertices equals zero. In this research, we determine some topological indices such as the Wiener index, the edgeWiener index, the hyper-Wiener index, the Harary index, the first Zagreb index, the second Zagreb index, and the Gutman index of zero divisor graph of integers modulo prime power and its direct product. © 2024 KSCAM.
Korean Society for Computational and Applied Mathematics
27341194
English
Article

author Maulana F.; Aditya M.Z.; Suwastika E.; Muchtadi-Alamsyah I.; Alimon N.I.; Sarmin N.H.
spellingShingle Maulana F.; Aditya M.Z.; Suwastika E.; Muchtadi-Alamsyah I.; Alimon N.I.; Sarmin N.H.
ON THE TOPOLOGICAL INDICES OF ZERO DIVISOR GRAPHS OF SOME COMMUTATIVE RINGS
author_facet Maulana F.; Aditya M.Z.; Suwastika E.; Muchtadi-Alamsyah I.; Alimon N.I.; Sarmin N.H.
author_sort Maulana F.; Aditya M.Z.; Suwastika E.; Muchtadi-Alamsyah I.; Alimon N.I.; Sarmin N.H.
title ON THE TOPOLOGICAL INDICES OF ZERO DIVISOR GRAPHS OF SOME COMMUTATIVE RINGS
title_short ON THE TOPOLOGICAL INDICES OF ZERO DIVISOR GRAPHS OF SOME COMMUTATIVE RINGS
title_full ON THE TOPOLOGICAL INDICES OF ZERO DIVISOR GRAPHS OF SOME COMMUTATIVE RINGS
title_fullStr ON THE TOPOLOGICAL INDICES OF ZERO DIVISOR GRAPHS OF SOME COMMUTATIVE RINGS
title_full_unstemmed ON THE TOPOLOGICAL INDICES OF ZERO DIVISOR GRAPHS OF SOME COMMUTATIVE RINGS
title_sort ON THE TOPOLOGICAL INDICES OF ZERO DIVISOR GRAPHS OF SOME COMMUTATIVE RINGS
publishDate 2024
container_title Journal of Applied Mathematics and Informatics
container_volume 42
container_issue 3
doi_str_mv 10.14317/jami.2024.663
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195682736&doi=10.14317%2fjami.2024.663&partnerID=40&md5=47ed7e9d3a031a3c215b98446c964ec3
description The zero divisor graph is the most basic way of representing an algebraic structure as a graph. For any commutative ring R, each element is a vertex on the zero divisor graph and two vertices are defined as adjacent if and only if the product of those vertices equals zero. In this research, we determine some topological indices such as the Wiener index, the edgeWiener index, the hyper-Wiener index, the Harary index, the first Zagreb index, the second Zagreb index, and the Gutman index of zero divisor graph of integers modulo prime power and its direct product. © 2024 KSCAM.
publisher Korean Society for Computational and Applied Mathematics
issn 27341194
language English
format Article
accesstype
record_format scopus
collection Scopus
_version_ 1809678475418664960