Chemical compositions and nutritional profiles of two edible tunicate species (Halocynthia roretzi and Halocynthia aurantium)

As an abundant marine bioresource, tunicates could be exploited in the food industry. However, limited knowledge of their chemical composition and nutritional profiles prohibited further application. In this study, two common edible tunicate species, Halocynthia roretzi (HR) and Halocynthia aurantiu...

Full description

Bibliographic Details
Published in:Heliyon
Main Author: Gao P.; Khong H.Y.; Wibowo A.; Zhen Y.; Peng C.; Miao W.
Format: Article
Language:English
Published: Elsevier Ltd 2024
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195407617&doi=10.1016%2fj.heliyon.2024.e32321&partnerID=40&md5=76e96482cb5cc4ffcf0dfd42ffbe0a00
id 2-s2.0-85195407617
spelling 2-s2.0-85195407617
Gao P.; Khong H.Y.; Wibowo A.; Zhen Y.; Peng C.; Miao W.
Chemical compositions and nutritional profiles of two edible tunicate species (Halocynthia roretzi and Halocynthia aurantium)
2024
Heliyon
10
12
10.1016/j.heliyon.2024.e32321
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195407617&doi=10.1016%2fj.heliyon.2024.e32321&partnerID=40&md5=76e96482cb5cc4ffcf0dfd42ffbe0a00
As an abundant marine bioresource, tunicates could be exploited in the food industry. However, limited knowledge of their chemical composition and nutritional profiles prohibited further application. In this study, two common edible tunicate species, Halocynthia roretzi (HR) and Halocynthia aurantium (HA), were subjected to comprehensive composition analysis in terms of moisture, protein, lipids, cellulose, ash, amino acids, fatty acids, non-cellulose carbohydrates and minerals. Reddish HR was much bigger than purple HA with respect to body length and weight, and their moisture fell within 82.98 %–90.92 %. The non-edible outer shell part (OS) and edible internal organs part (IO) had a dry weight ratio of around 3:2 for both two species. Generally, for both HR and HA, IO was more abundant in protein and lipids. In contrast, OS had much higher cellulose contents, confirming the better suitability of IO as a nutritional seafood. IO was richer in essential amino acids and unsaturated fatty acids, while OS had more abundant saturated fatty acids. The detected non-cellulose monosugars ranged from 0.47 % to 1.18 % and indicated the presence of some sulfated glycans. IO of HR had higher contents of essential minerals, such as Cu, Zn, and Fe, while IO of HA showed a higher K content. To sum up, this study identified the chemical composition and nutritional profile variations among different tunicate species and various dissected parts, guiding the development of specific strategies to exploit tunicates for proper food applications. © 2024 The Authors
Elsevier Ltd
24058440
English
Article
All Open Access; Gold Open Access
author Gao P.; Khong H.Y.; Wibowo A.; Zhen Y.; Peng C.; Miao W.
spellingShingle Gao P.; Khong H.Y.; Wibowo A.; Zhen Y.; Peng C.; Miao W.
Chemical compositions and nutritional profiles of two edible tunicate species (Halocynthia roretzi and Halocynthia aurantium)
author_facet Gao P.; Khong H.Y.; Wibowo A.; Zhen Y.; Peng C.; Miao W.
author_sort Gao P.; Khong H.Y.; Wibowo A.; Zhen Y.; Peng C.; Miao W.
title Chemical compositions and nutritional profiles of two edible tunicate species (Halocynthia roretzi and Halocynthia aurantium)
title_short Chemical compositions and nutritional profiles of two edible tunicate species (Halocynthia roretzi and Halocynthia aurantium)
title_full Chemical compositions and nutritional profiles of two edible tunicate species (Halocynthia roretzi and Halocynthia aurantium)
title_fullStr Chemical compositions and nutritional profiles of two edible tunicate species (Halocynthia roretzi and Halocynthia aurantium)
title_full_unstemmed Chemical compositions and nutritional profiles of two edible tunicate species (Halocynthia roretzi and Halocynthia aurantium)
title_sort Chemical compositions and nutritional profiles of two edible tunicate species (Halocynthia roretzi and Halocynthia aurantium)
publishDate 2024
container_title Heliyon
container_volume 10
container_issue 12
doi_str_mv 10.1016/j.heliyon.2024.e32321
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195407617&doi=10.1016%2fj.heliyon.2024.e32321&partnerID=40&md5=76e96482cb5cc4ffcf0dfd42ffbe0a00
description As an abundant marine bioresource, tunicates could be exploited in the food industry. However, limited knowledge of their chemical composition and nutritional profiles prohibited further application. In this study, two common edible tunicate species, Halocynthia roretzi (HR) and Halocynthia aurantium (HA), were subjected to comprehensive composition analysis in terms of moisture, protein, lipids, cellulose, ash, amino acids, fatty acids, non-cellulose carbohydrates and minerals. Reddish HR was much bigger than purple HA with respect to body length and weight, and their moisture fell within 82.98 %–90.92 %. The non-edible outer shell part (OS) and edible internal organs part (IO) had a dry weight ratio of around 3:2 for both two species. Generally, for both HR and HA, IO was more abundant in protein and lipids. In contrast, OS had much higher cellulose contents, confirming the better suitability of IO as a nutritional seafood. IO was richer in essential amino acids and unsaturated fatty acids, while OS had more abundant saturated fatty acids. The detected non-cellulose monosugars ranged from 0.47 % to 1.18 % and indicated the presence of some sulfated glycans. IO of HR had higher contents of essential minerals, such as Cu, Zn, and Fe, while IO of HA showed a higher K content. To sum up, this study identified the chemical composition and nutritional profile variations among different tunicate species and various dissected parts, guiding the development of specific strategies to exploit tunicates for proper food applications. © 2024 The Authors
publisher Elsevier Ltd
issn 24058440
language English
format Article
accesstype All Open Access; Gold Open Access
record_format scopus
collection Scopus
_version_ 1809678152328282112