Leveraging on Synthetic Data Generation Techniques to Train Machine Learning Models for Tenaga Nasional Berhad Stock Price Movement Prediction
This study employs machine learning models to explore stock price prediction for Tenaga Nasional Berhad (TNB), Malaysia’s primary electricity provider. It addresses the limitations of previous studies by incorporating various input variables, including the stock market, technical, financial, and eco...
Published in: | International Arab Journal of Information Technology |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Zarka Private University
2024
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195118130&doi=10.34028%2fiajit%2f21%2f3%2f11&partnerID=40&md5=2377a2513ce443781bcc9528f4fbdbf6 |
id |
2-s2.0-85195118130 |
---|---|
spelling |
2-s2.0-85195118130 Nazarudin N.A.S.M.; Ariffin N.H.M.; Maskat R. Leveraging on Synthetic Data Generation Techniques to Train Machine Learning Models for Tenaga Nasional Berhad Stock Price Movement Prediction 2024 International Arab Journal of Information Technology 21 3 10.34028/iajit/21/3/11 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195118130&doi=10.34028%2fiajit%2f21%2f3%2f11&partnerID=40&md5=2377a2513ce443781bcc9528f4fbdbf6 This study employs machine learning models to explore stock price prediction for Tenaga Nasional Berhad (TNB), Malaysia’s primary electricity provider. It addresses the limitations of previous studies by incorporating various input variables, including the stock market, technical, financial, and economic data. This study also tackles the issue of imbalanced class distribution due to small datasets of stock market data by generating synthetic data using Synthetic Minority Over-Sampling Technique (SMOTE) and Generative Adversarial Network-Synthetic Minority Over-Sampling Technique (GAN-SMOTE) techniques. The performance of four classifier models (random forest, Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), and Artificial Neural Network (ANN) is evaluated without any synthetic data and with synthetic data generated. The SMOTE-ANN model is the bestperforming model, exhibiting superior accuracy of 93%, F1-Score of 92%, precision of 90%, recall of 94%, and specificity of 92%. Overall, this research provides valuable insights into TNB stock price movements, offers a solution for imbalanced class distribution, and identifies the top-performing model for predicting TNB stock price movement. These findings are relevant to investors, analysts, and organisations in the utility sector. © 2024, Zarka Private University. All rights reserved. Zarka Private University 16833198 English Article All Open Access; Gold Open Access |
author |
Nazarudin N.A.S.M.; Ariffin N.H.M.; Maskat R. |
spellingShingle |
Nazarudin N.A.S.M.; Ariffin N.H.M.; Maskat R. Leveraging on Synthetic Data Generation Techniques to Train Machine Learning Models for Tenaga Nasional Berhad Stock Price Movement Prediction |
author_facet |
Nazarudin N.A.S.M.; Ariffin N.H.M.; Maskat R. |
author_sort |
Nazarudin N.A.S.M.; Ariffin N.H.M.; Maskat R. |
title |
Leveraging on Synthetic Data Generation Techniques to Train Machine Learning Models for Tenaga Nasional Berhad Stock Price Movement Prediction |
title_short |
Leveraging on Synthetic Data Generation Techniques to Train Machine Learning Models for Tenaga Nasional Berhad Stock Price Movement Prediction |
title_full |
Leveraging on Synthetic Data Generation Techniques to Train Machine Learning Models for Tenaga Nasional Berhad Stock Price Movement Prediction |
title_fullStr |
Leveraging on Synthetic Data Generation Techniques to Train Machine Learning Models for Tenaga Nasional Berhad Stock Price Movement Prediction |
title_full_unstemmed |
Leveraging on Synthetic Data Generation Techniques to Train Machine Learning Models for Tenaga Nasional Berhad Stock Price Movement Prediction |
title_sort |
Leveraging on Synthetic Data Generation Techniques to Train Machine Learning Models for Tenaga Nasional Berhad Stock Price Movement Prediction |
publishDate |
2024 |
container_title |
International Arab Journal of Information Technology |
container_volume |
21 |
container_issue |
3 |
doi_str_mv |
10.34028/iajit/21/3/11 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195118130&doi=10.34028%2fiajit%2f21%2f3%2f11&partnerID=40&md5=2377a2513ce443781bcc9528f4fbdbf6 |
description |
This study employs machine learning models to explore stock price prediction for Tenaga Nasional Berhad (TNB), Malaysia’s primary electricity provider. It addresses the limitations of previous studies by incorporating various input variables, including the stock market, technical, financial, and economic data. This study also tackles the issue of imbalanced class distribution due to small datasets of stock market data by generating synthetic data using Synthetic Minority Over-Sampling Technique (SMOTE) and Generative Adversarial Network-Synthetic Minority Over-Sampling Technique (GAN-SMOTE) techniques. The performance of four classifier models (random forest, Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), and Artificial Neural Network (ANN) is evaluated without any synthetic data and with synthetic data generated. The SMOTE-ANN model is the bestperforming model, exhibiting superior accuracy of 93%, F1-Score of 92%, precision of 90%, recall of 94%, and specificity of 92%. Overall, this research provides valuable insights into TNB stock price movements, offers a solution for imbalanced class distribution, and identifies the top-performing model for predicting TNB stock price movement. These findings are relevant to investors, analysts, and organisations in the utility sector. © 2024, Zarka Private University. All rights reserved. |
publisher |
Zarka Private University |
issn |
16833198 |
language |
English |
format |
Article |
accesstype |
All Open Access; Gold Open Access |
record_format |
scopus |
collection |
Scopus |
_version_ |
1809678005932392448 |