Summary: | This study addressed the limited antibacterial durability of textile materials, which has suppressed their applications in preventing infectious disease transmission. A class of highly durable antibacterial textiles was developed by incorporating protonated polyaniline (PANI) textile with poly(acrylic acid) (PAA) as the functional binder via cross-linking polymerization. The resulting PAA-PANI textile exhibits exceptional electrical conductivity, reaching 8.33 ± 0.04 × 10-3 S/cm when cross-linked with 30% PAA. Remarkably, this textile maintains its electrical stability at 10-3 S/cm even after 50 washing cycles, demonstrating unparalleled durability. Furthermore, the PANI-PAA textile showcases remarkable antibacterial efficacy, with 95.48% efficiency against Pseudomonas aeruginosa and 92.35% efficiency against Staphylococcus aureus bacteria, even after 50 washing cycles. Comparatively, the PAA-PANI textile outperforms its PANI counterpart by achieving an astounding 80% scavenging activity rate, whereas the latter only displayed a rate of 3.22%. This result suggests a solid integration of PAA-PANI into the textile, leading to sustainable antioxidant release. The successful cross-linking of PAA-PANI in textiles holds significant implications for various industries, offering a foundation for the development of wearable textiles with unprecedented antibacterial durability and electrical stability. This breakthrough opens new avenues for combating infectious diseases and enhancing the performance of wearable technologies. © 2024 The Authors. Published by American Chemical Society.
|