Enhancing riverine load prediction of anthropogenic pollutants: Harnessing the potential of feed-forward backpropagation (FFBP) artificial neural network (ANN) models
Assessing riverine pollutant loads is a more realistic method for analysing point and non-point anthropogenic pollution sources throughout a watershed. This study compares numerous mathematical modelling strategies for estimating riverine loads based on the chosen water quality parameters: Biochemic...
Published in: | Results in Engineering |
---|---|
Main Author: | Khairudin K.; Ul-Saufie A.Z.; Senin S.F.; Zainudin Z.; Rashid A.M.; Abu Bakar N.F.; Anas Abd Wahid M.Z.; Azha S.F.; Abd-Wahab F.; Wang L.; Sahar F.N.; Osman M.S. |
Format: | Article |
Language: | English |
Published: |
Elsevier B.V.
2024
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189939391&doi=10.1016%2fj.rineng.2024.102072&partnerID=40&md5=1b41e5180e4e2c5be04e5a5ecaa86eed |
Similar Items
-
Enhancing riverine load prediction of anthropogenic pollutants: Harnessing the potential of feed-forward backpropagation (FFBP) artificial neural network (ANN) models
by: Khairudin, et al.
Published: (2024) -
Feed-forward back-propagation (FFBP) algorithm for property prediction in friction stir spot welding of aluminium alloy
by: Armansyah; Chie H.H.; Saedon J.; Adenan S.
Published: (2020) -
Unravelling anthropogenic sources in Kereh River, Malaysia: Analysis of decadal spatial-temporal evolutions by employing multivariate techniques
by: Khairudin K.; Abu Bakar N.F.; Ul-Saufie A.Z.; Abd Wahid M.Z.A.; Yahaya M.A.; Mazlan M.F.; Pin Y.S.; Osman M.S.
Published: (2022) -
Future daily PM10 concentrations prediction by combining regression models and feedforward backpropagation models with principle component analysis (PCA)
by: Ul-Saufie A.Z.; Yahaya A.S.; Ramli N.A.; Rosaida N.; Hamid H.A.
Published: (2013) -
Precision Education Reviews: A Case Study on Predicting Student's Performance using Feed Forward Neural Network
by: Yusof M.H.M.; Khalid I.A.
Published: (2021)