Assessing the Impact of Temperature on the Duration of COVID-19 Transmission in Terengganu, Malaysia: Implications for Public Health Strategies
Introduction: The SARS-CoV-2 virus, responsible for the global COVID-19 pandemic and its associated high morbidity and mortality, continues to be a significant public health concern. This study investigates the influence of temperature variables on COVID-19 transmission in Terengganu, Malaysia, whic...
Published in: | Medical Journal of Malaysia |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Malaysian Medical Association
2024
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189599954&partnerID=40&md5=afcf47c3d93088bcfccc62afecf046f5 |
id |
2-s2.0-85189599954 |
---|---|
spelling |
2-s2.0-85189599954 Mohamad N.S.; Dom N.C.; Abdullah S. Assessing the Impact of Temperature on the Duration of COVID-19 Transmission in Terengganu, Malaysia: Implications for Public Health Strategies 2024 Medical Journal of Malaysia 79 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189599954&partnerID=40&md5=afcf47c3d93088bcfccc62afecf046f5 Introduction: The SARS-CoV-2 virus, responsible for the global COVID-19 pandemic and its associated high morbidity and mortality, continues to be a significant public health concern. This study investigates the influence of temperature variables on COVID-19 transmission in Terengganu, Malaysia, which, despite having experienced a comparatively lower number of cases, presents a unique environment for understanding how temperature factors may play a critical role in virus transmission dynamics. Materials and Methods: We conducted a descriptive analysis to assess the spatial distribution of COVID-19 cases in our study area. To explore the relationship between temperature variables and COVID-19 transmission, we employed Pearson correlation analysis, examining the correlations between daily average, minimum, and maximum temperature data and the temporal distribution of COVID-19 cases as reported by the Ministry of Health, Malaysia. This approach allowed us to comprehensively investigate the impact of weather on the transmission dynamics of COVID-19. Results: Our findings reveal a noteworthy correlation (p<0.05) between average and maximum temperatures and COVID-19 transmission, highlighting the influence of weather on disease dynamics. Notably, exceptions were observed in the Hulu Terengganu district, where fewer than 10 cases occurred in each sub-district throughout the study period, warranting special consideration. Conclusion: In summary, our study highlights the significance of temperature in shaping COVID-19 transmission. This stresses the importance of including weather variables in pandemic strategies. We also suggest comparing various cities to broaden our understanding of how weather affects disease spread, aiding future public health efforts. © 2024, Malaysian Medical Association. All rights reserved. Malaysian Medical Association 3005283 English Article |
author |
Mohamad N.S.; Dom N.C.; Abdullah S. |
spellingShingle |
Mohamad N.S.; Dom N.C.; Abdullah S. Assessing the Impact of Temperature on the Duration of COVID-19 Transmission in Terengganu, Malaysia: Implications for Public Health Strategies |
author_facet |
Mohamad N.S.; Dom N.C.; Abdullah S. |
author_sort |
Mohamad N.S.; Dom N.C.; Abdullah S. |
title |
Assessing the Impact of Temperature on the Duration of COVID-19 Transmission in Terengganu, Malaysia: Implications for Public Health Strategies |
title_short |
Assessing the Impact of Temperature on the Duration of COVID-19 Transmission in Terengganu, Malaysia: Implications for Public Health Strategies |
title_full |
Assessing the Impact of Temperature on the Duration of COVID-19 Transmission in Terengganu, Malaysia: Implications for Public Health Strategies |
title_fullStr |
Assessing the Impact of Temperature on the Duration of COVID-19 Transmission in Terengganu, Malaysia: Implications for Public Health Strategies |
title_full_unstemmed |
Assessing the Impact of Temperature on the Duration of COVID-19 Transmission in Terengganu, Malaysia: Implications for Public Health Strategies |
title_sort |
Assessing the Impact of Temperature on the Duration of COVID-19 Transmission in Terengganu, Malaysia: Implications for Public Health Strategies |
publishDate |
2024 |
container_title |
Medical Journal of Malaysia |
container_volume |
79 |
container_issue |
|
doi_str_mv |
|
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189599954&partnerID=40&md5=afcf47c3d93088bcfccc62afecf046f5 |
description |
Introduction: The SARS-CoV-2 virus, responsible for the global COVID-19 pandemic and its associated high morbidity and mortality, continues to be a significant public health concern. This study investigates the influence of temperature variables on COVID-19 transmission in Terengganu, Malaysia, which, despite having experienced a comparatively lower number of cases, presents a unique environment for understanding how temperature factors may play a critical role in virus transmission dynamics. Materials and Methods: We conducted a descriptive analysis to assess the spatial distribution of COVID-19 cases in our study area. To explore the relationship between temperature variables and COVID-19 transmission, we employed Pearson correlation analysis, examining the correlations between daily average, minimum, and maximum temperature data and the temporal distribution of COVID-19 cases as reported by the Ministry of Health, Malaysia. This approach allowed us to comprehensively investigate the impact of weather on the transmission dynamics of COVID-19. Results: Our findings reveal a noteworthy correlation (p<0.05) between average and maximum temperatures and COVID-19 transmission, highlighting the influence of weather on disease dynamics. Notably, exceptions were observed in the Hulu Terengganu district, where fewer than 10 cases occurred in each sub-district throughout the study period, warranting special consideration. Conclusion: In summary, our study highlights the significance of temperature in shaping COVID-19 transmission. This stresses the importance of including weather variables in pandemic strategies. We also suggest comparing various cities to broaden our understanding of how weather affects disease spread, aiding future public health efforts. © 2024, Malaysian Medical Association. All rights reserved. |
publisher |
Malaysian Medical Association |
issn |
3005283 |
language |
English |
format |
Article |
accesstype |
|
record_format |
scopus |
collection |
Scopus |
_version_ |
1809677772637863936 |