Iron cobalt selenide counter electrode for application in dye-sensitized solar cell: synthesis parameter, structural, electrochemical, and efficiency studies

This work reports on the synthesis of FeCo2Se4 from FeCo2O4 by varying the duration of the selenization process. The structure and crystallinity of the products were characterized using X-ray diffraction (XRD). Energy dispersive X-ray spectroscopy (EDX) analyzed the compositions of the products. The...

Full description

Bibliographic Details
Published in:Ionics
Main Author: Najihah M.Z.; Saaid F.I.; Noor I.M.; Woo H.J.; Winie T.
Format: Article
Language:English
Published: Springer Science and Business Media Deutschland GmbH 2024
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85187487986&doi=10.1007%2fs11581-024-05462-z&partnerID=40&md5=c4f413279b6b81100233f2256305248a
id 2-s2.0-85187487986
spelling 2-s2.0-85187487986
Najihah M.Z.; Saaid F.I.; Noor I.M.; Woo H.J.; Winie T.
Iron cobalt selenide counter electrode for application in dye-sensitized solar cell: synthesis parameter, structural, electrochemical, and efficiency studies
2024
Ionics
30
5
10.1007/s11581-024-05462-z
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85187487986&doi=10.1007%2fs11581-024-05462-z&partnerID=40&md5=c4f413279b6b81100233f2256305248a
This work reports on the synthesis of FeCo2Se4 from FeCo2O4 by varying the duration of the selenization process. The structure and crystallinity of the products were characterized using X-ray diffraction (XRD). Energy dispersive X-ray spectroscopy (EDX) analyzed the compositions of the products. The FeCo2O4 presents a thinner and smoother nanosheets structure whereas the FeCo2Se4 forms a thicker and rougher nanosheets structure. The electrocatalytic effects of FeCo2Se4 and FeCo2O4 in comparison to Pt were examined by cyclic voltammetry (CV) and further supported by Tafel polarization. Electrochemical impedance spectroscopy (EIS) was employed to study the internal resistance and charge transfer kinetics. The FeCo2Se4 obtained after 12 h selenization treatment (FeCo2Se4) exhibits the highest electrocatalytic activity and the lowest charge transfer resistance, followed by Pt and FeCo2O4. The poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP)/ propylene carbonate (PC)/ 1,2-dimethoxyethane (DME)/ 1-methyl-3-propyl imidazolium iodide (MPII)/ sodium iodide (NaI)/ iodine (I2) gel polymer electrolytes were assembled into dye-sensitized solar cells (DSSCs) with titanium oxide (TiO2) photoanode and the respective counter electrode. The respective counter electrode was FeCo2Se4, FeCo2O4, or platinum (Pt). The efficiencies attained for FeCo2Se4, FeCo2O4, and Pt counter electrodes are 8.71, 6.04, and 6.11%, respectively. Superior cell efficiency with FeCo2Se4 counter electrode can be attributed to the higher porosity, larger specific surface area, lower electron transfer resistance, and higher I3− reduction rate of FeCo2Se4. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
Springer Science and Business Media Deutschland GmbH
09477047
English
Article

author Najihah M.Z.; Saaid F.I.; Noor I.M.; Woo H.J.; Winie T.
spellingShingle Najihah M.Z.; Saaid F.I.; Noor I.M.; Woo H.J.; Winie T.
Iron cobalt selenide counter electrode for application in dye-sensitized solar cell: synthesis parameter, structural, electrochemical, and efficiency studies
author_facet Najihah M.Z.; Saaid F.I.; Noor I.M.; Woo H.J.; Winie T.
author_sort Najihah M.Z.; Saaid F.I.; Noor I.M.; Woo H.J.; Winie T.
title Iron cobalt selenide counter electrode for application in dye-sensitized solar cell: synthesis parameter, structural, electrochemical, and efficiency studies
title_short Iron cobalt selenide counter electrode for application in dye-sensitized solar cell: synthesis parameter, structural, electrochemical, and efficiency studies
title_full Iron cobalt selenide counter electrode for application in dye-sensitized solar cell: synthesis parameter, structural, electrochemical, and efficiency studies
title_fullStr Iron cobalt selenide counter electrode for application in dye-sensitized solar cell: synthesis parameter, structural, electrochemical, and efficiency studies
title_full_unstemmed Iron cobalt selenide counter electrode for application in dye-sensitized solar cell: synthesis parameter, structural, electrochemical, and efficiency studies
title_sort Iron cobalt selenide counter electrode for application in dye-sensitized solar cell: synthesis parameter, structural, electrochemical, and efficiency studies
publishDate 2024
container_title Ionics
container_volume 30
container_issue 5
doi_str_mv 10.1007/s11581-024-05462-z
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85187487986&doi=10.1007%2fs11581-024-05462-z&partnerID=40&md5=c4f413279b6b81100233f2256305248a
description This work reports on the synthesis of FeCo2Se4 from FeCo2O4 by varying the duration of the selenization process. The structure and crystallinity of the products were characterized using X-ray diffraction (XRD). Energy dispersive X-ray spectroscopy (EDX) analyzed the compositions of the products. The FeCo2O4 presents a thinner and smoother nanosheets structure whereas the FeCo2Se4 forms a thicker and rougher nanosheets structure. The electrocatalytic effects of FeCo2Se4 and FeCo2O4 in comparison to Pt were examined by cyclic voltammetry (CV) and further supported by Tafel polarization. Electrochemical impedance spectroscopy (EIS) was employed to study the internal resistance and charge transfer kinetics. The FeCo2Se4 obtained after 12 h selenization treatment (FeCo2Se4) exhibits the highest electrocatalytic activity and the lowest charge transfer resistance, followed by Pt and FeCo2O4. The poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP)/ propylene carbonate (PC)/ 1,2-dimethoxyethane (DME)/ 1-methyl-3-propyl imidazolium iodide (MPII)/ sodium iodide (NaI)/ iodine (I2) gel polymer electrolytes were assembled into dye-sensitized solar cells (DSSCs) with titanium oxide (TiO2) photoanode and the respective counter electrode. The respective counter electrode was FeCo2Se4, FeCo2O4, or platinum (Pt). The efficiencies attained for FeCo2Se4, FeCo2O4, and Pt counter electrodes are 8.71, 6.04, and 6.11%, respectively. Superior cell efficiency with FeCo2Se4 counter electrode can be attributed to the higher porosity, larger specific surface area, lower electron transfer resistance, and higher I3− reduction rate of FeCo2Se4. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
publisher Springer Science and Business Media Deutschland GmbH
issn 09477047
language English
format Article
accesstype
record_format scopus
collection Scopus
_version_ 1814778499737583616