ZnO/ZnS/Carbon Nanocomposite-Derived Sulfur-Doped carbon nanosheets using a layered nanoreactor: Towards advanced supercapacitor electrodes and devices

Various approaches have been applied to increase the capacity of electric double layer capacitors (EDLC) by increasing the accessible surface area of the electrode material (mainly carbon) for electrolyte ions. One method is to make the active material particles smaller or use graphite-based carbon...

Full description

Bibliographic Details
Published in:Chemical Engineering Journal
Main Author: Yeganeh Ghotbi M.; Sikiru S.; Rajabi A.; Soleimani H.; Kou L.; Ansari M.N.M.; Ramachandaramurthy V.K.
Format: Article
Language:English
Published: Elsevier B.V. 2024
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85186526427&doi=10.1016%2fj.cej.2024.150018&partnerID=40&md5=5717608b7d5f00a4425c8acd630c0282
id 2-s2.0-85186526427
spelling 2-s2.0-85186526427
Yeganeh Ghotbi M.; Sikiru S.; Rajabi A.; Soleimani H.; Kou L.; Ansari M.N.M.; Ramachandaramurthy V.K.
ZnO/ZnS/Carbon Nanocomposite-Derived Sulfur-Doped carbon nanosheets using a layered nanoreactor: Towards advanced supercapacitor electrodes and devices
2024
Chemical Engineering Journal
485

10.1016/j.cej.2024.150018
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85186526427&doi=10.1016%2fj.cej.2024.150018&partnerID=40&md5=5717608b7d5f00a4425c8acd630c0282
Various approaches have been applied to increase the capacity of electric double layer capacitors (EDLC) by increasing the accessible surface area of the electrode material (mainly carbon) for electrolyte ions. One method is to make the active material particles smaller or use graphite-based carbon with less thickness. Another method involves doping carbon materials with some group III and V elements to create pseudo-capacitive properties. And finally, hybridization/combination of carbon with some metal compounds due to the inductive synergistic effect. Using the idea of layered nanoreactors, we prepared a ZnO/ZnS/S-doped carbon nanocomposite, i.e. producing a metal oxide/sulfide with a heteroatom-doped carbon material, simultaneously. ZnO/ZnS/carbon nanocomposite was acid washed to remove ZnO and obtain ZnS/C; ZnS/carbon nanocomposite was again acid washed to remove ZnS and obtain S-doped carbon material. ZnO/ZnS/S-doped carbon, ZnS/S-doped carbon nanocomposites and S-doped carbon materials showed the specific capacitance (Cs) values of 119, 1048 and 454F/g, respectively, when used as the active material in the three-electrode system. In addition, the S-doped carbon material showed a Cs value of 57F/g when used as the active material in the fabrication of a symmetric commercial-like supercapacitor device. © 2024 Elsevier B.V.
Elsevier B.V.
13858947
English
Article

author Yeganeh Ghotbi M.; Sikiru S.; Rajabi A.; Soleimani H.; Kou L.; Ansari M.N.M.; Ramachandaramurthy V.K.
spellingShingle Yeganeh Ghotbi M.; Sikiru S.; Rajabi A.; Soleimani H.; Kou L.; Ansari M.N.M.; Ramachandaramurthy V.K.
ZnO/ZnS/Carbon Nanocomposite-Derived Sulfur-Doped carbon nanosheets using a layered nanoreactor: Towards advanced supercapacitor electrodes and devices
author_facet Yeganeh Ghotbi M.; Sikiru S.; Rajabi A.; Soleimani H.; Kou L.; Ansari M.N.M.; Ramachandaramurthy V.K.
author_sort Yeganeh Ghotbi M.; Sikiru S.; Rajabi A.; Soleimani H.; Kou L.; Ansari M.N.M.; Ramachandaramurthy V.K.
title ZnO/ZnS/Carbon Nanocomposite-Derived Sulfur-Doped carbon nanosheets using a layered nanoreactor: Towards advanced supercapacitor electrodes and devices
title_short ZnO/ZnS/Carbon Nanocomposite-Derived Sulfur-Doped carbon nanosheets using a layered nanoreactor: Towards advanced supercapacitor electrodes and devices
title_full ZnO/ZnS/Carbon Nanocomposite-Derived Sulfur-Doped carbon nanosheets using a layered nanoreactor: Towards advanced supercapacitor electrodes and devices
title_fullStr ZnO/ZnS/Carbon Nanocomposite-Derived Sulfur-Doped carbon nanosheets using a layered nanoreactor: Towards advanced supercapacitor electrodes and devices
title_full_unstemmed ZnO/ZnS/Carbon Nanocomposite-Derived Sulfur-Doped carbon nanosheets using a layered nanoreactor: Towards advanced supercapacitor electrodes and devices
title_sort ZnO/ZnS/Carbon Nanocomposite-Derived Sulfur-Doped carbon nanosheets using a layered nanoreactor: Towards advanced supercapacitor electrodes and devices
publishDate 2024
container_title Chemical Engineering Journal
container_volume 485
container_issue
doi_str_mv 10.1016/j.cej.2024.150018
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85186526427&doi=10.1016%2fj.cej.2024.150018&partnerID=40&md5=5717608b7d5f00a4425c8acd630c0282
description Various approaches have been applied to increase the capacity of electric double layer capacitors (EDLC) by increasing the accessible surface area of the electrode material (mainly carbon) for electrolyte ions. One method is to make the active material particles smaller or use graphite-based carbon with less thickness. Another method involves doping carbon materials with some group III and V elements to create pseudo-capacitive properties. And finally, hybridization/combination of carbon with some metal compounds due to the inductive synergistic effect. Using the idea of layered nanoreactors, we prepared a ZnO/ZnS/S-doped carbon nanocomposite, i.e. producing a metal oxide/sulfide with a heteroatom-doped carbon material, simultaneously. ZnO/ZnS/carbon nanocomposite was acid washed to remove ZnO and obtain ZnS/C; ZnS/carbon nanocomposite was again acid washed to remove ZnS and obtain S-doped carbon material. ZnO/ZnS/S-doped carbon, ZnS/S-doped carbon nanocomposites and S-doped carbon materials showed the specific capacitance (Cs) values of 119, 1048 and 454F/g, respectively, when used as the active material in the three-electrode system. In addition, the S-doped carbon material showed a Cs value of 57F/g when used as the active material in the fabrication of a symmetric commercial-like supercapacitor device. © 2024 Elsevier B.V.
publisher Elsevier B.V.
issn 13858947
language English
format Article
accesstype
record_format scopus
collection Scopus
_version_ 1809677674394681344