Performance evaluation of generative adversarial networks for generating mugshot images from text description
The process of identifying photos from a sketch has been explored by many researchers, and the performance of the identification process is almost perfect, particularly for viewed sketches. Suspect identification based on sketches is one of the applications in forensic science. To identify the suspe...
Published in: | Bulletin of Electrical Engineering and Informatics |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Institute of Advanced Engineering and Science
2024
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85186246281&doi=10.11591%2feei.v13i1.5895&partnerID=40&md5=64476a8193154568e48b7b7eca6d7c3d |
id |
2-s2.0-85186246281 |
---|---|
spelling |
2-s2.0-85186246281 Bahrum N.N.; Setumin S.; Othman N.A.; Maruzuki M.I.F.; Abdullah M.F.; Ani A.I.C. Performance evaluation of generative adversarial networks for generating mugshot images from text description 2024 Bulletin of Electrical Engineering and Informatics 13 1 10.11591/eei.v13i1.5895 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85186246281&doi=10.11591%2feei.v13i1.5895&partnerID=40&md5=64476a8193154568e48b7b7eca6d7c3d The process of identifying photos from a sketch has been explored by many researchers, and the performance of the identification process is almost perfect, particularly for viewed sketches. Suspect identification based on sketches is one of the applications in forensic science. To identify the suspect using these kinds of methods, a face sketch is required. Hence, the methods require skilled artists to sketch the suspect based on descriptions provided by eyewitnesses. However, the skills of these artists are different from one another, which results in different rendered sketches. Therefore, this work attempts to propose a new identification method based only on forensic face-written descriptions. To investigate the feasibility of the proposed method, this study has evaluated the performance of some text-to-photo generators on both viewed and forensic datasets using three different models of GAN which are SAGAN, DFGAN, and DCGAN. Then, the generated images are compared to the real photo contained within those datasets to evaluate how well the proposed method recognizes the faces. The results demonstrated that the recognition rate for the generated photos by the DCGAN models is better than the other two models which achieve a 38.3% recognition rate at rank-10 for mugshot identification. © 2024, Institute of Advanced Engineering and Science. All rights reserved. Institute of Advanced Engineering and Science 20893191 English Article All Open Access; Gold Open Access |
author |
Bahrum N.N.; Setumin S.; Othman N.A.; Maruzuki M.I.F.; Abdullah M.F.; Ani A.I.C. |
spellingShingle |
Bahrum N.N.; Setumin S.; Othman N.A.; Maruzuki M.I.F.; Abdullah M.F.; Ani A.I.C. Performance evaluation of generative adversarial networks for generating mugshot images from text description |
author_facet |
Bahrum N.N.; Setumin S.; Othman N.A.; Maruzuki M.I.F.; Abdullah M.F.; Ani A.I.C. |
author_sort |
Bahrum N.N.; Setumin S.; Othman N.A.; Maruzuki M.I.F.; Abdullah M.F.; Ani A.I.C. |
title |
Performance evaluation of generative adversarial networks for generating mugshot images from text description |
title_short |
Performance evaluation of generative adversarial networks for generating mugshot images from text description |
title_full |
Performance evaluation of generative adversarial networks for generating mugshot images from text description |
title_fullStr |
Performance evaluation of generative adversarial networks for generating mugshot images from text description |
title_full_unstemmed |
Performance evaluation of generative adversarial networks for generating mugshot images from text description |
title_sort |
Performance evaluation of generative adversarial networks for generating mugshot images from text description |
publishDate |
2024 |
container_title |
Bulletin of Electrical Engineering and Informatics |
container_volume |
13 |
container_issue |
1 |
doi_str_mv |
10.11591/eei.v13i1.5895 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85186246281&doi=10.11591%2feei.v13i1.5895&partnerID=40&md5=64476a8193154568e48b7b7eca6d7c3d |
description |
The process of identifying photos from a sketch has been explored by many researchers, and the performance of the identification process is almost perfect, particularly for viewed sketches. Suspect identification based on sketches is one of the applications in forensic science. To identify the suspect using these kinds of methods, a face sketch is required. Hence, the methods require skilled artists to sketch the suspect based on descriptions provided by eyewitnesses. However, the skills of these artists are different from one another, which results in different rendered sketches. Therefore, this work attempts to propose a new identification method based only on forensic face-written descriptions. To investigate the feasibility of the proposed method, this study has evaluated the performance of some text-to-photo generators on both viewed and forensic datasets using three different models of GAN which are SAGAN, DFGAN, and DCGAN. Then, the generated images are compared to the real photo contained within those datasets to evaluate how well the proposed method recognizes the faces. The results demonstrated that the recognition rate for the generated photos by the DCGAN models is better than the other two models which achieve a 38.3% recognition rate at rank-10 for mugshot identification. © 2024, Institute of Advanced Engineering and Science. All rights reserved. |
publisher |
Institute of Advanced Engineering and Science |
issn |
20893191 |
language |
English |
format |
Article |
accesstype |
All Open Access; Gold Open Access |
record_format |
scopus |
collection |
Scopus |
_version_ |
1809677883249000448 |