Summary: | This study aimed to synthesize highly reactive ZrO2 nanoparticles using a straightforward sol-gel method for addressing water contamination from hazardous metal ions and organic dyes. Structural and photocatalytic properties were assessed using X-ray diffraction (XRD), Fourier transmission Infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and UV–visible absorption spectroscopy. XRD analysis confirmed the tetragonal crystal structure of ZrO2. Photodegradation experiments using Eriochrome Black T (EBT) as a model dye revealed nearly 99% degradation under natural sunlight. Investigations into catalyst loading, dye concentration, pH, and irradiation source were conducted. Preliminary tests demonstrated the adsorbent's efficacy in removing Ca2+ ions. Further process optimizations could significantly enhance the potential of this innovative adsorbent for extracting metal ions from complex effluents. © 2024 The Authors
|