Spatio-temporal Analysis of Dengue Cases in Sabah

Introduction: Dengue fever is a significant public health issue worldwide. Geographic Information System is a powerful tool in public health, allowing for the analysis and visualisation of spatial data to understand disease distribution and identify clusters of cases. Therefore, this study aims to d...

Full description

Bibliographic Details
Published in:Malaysian Journal of Medicine and Health Sciences
Main Author: Kunasagran P.D.; Rahim S.S.S.A.; Jeffree M.S.; Atil A.; Hidrus A.; Mokti K.; Abd Rahim M.A.; Muyou A.J.; Mujin S.M.; Ali N.; Taib N.Md.; Zali S.M.I.R.M.; Dapari R.; Azhar Z.I.; Khoon K.T.
Format: Article
Language:English
Published: Universiti Putra Malaysia Press 2023
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85185189375&doi=10.47836%2fmjmhs.19.s17.12&partnerID=40&md5=06f91bf50a45f0b914e1f47c5290c9b2
id 2-s2.0-85185189375
spelling 2-s2.0-85185189375
Kunasagran P.D.; Rahim S.S.S.A.; Jeffree M.S.; Atil A.; Hidrus A.; Mokti K.; Abd Rahim M.A.; Muyou A.J.; Mujin S.M.; Ali N.; Taib N.Md.; Zali S.M.I.R.M.; Dapari R.; Azhar Z.I.; Khoon K.T.
Spatio-temporal Analysis of Dengue Cases in Sabah
2023
Malaysian Journal of Medicine and Health Sciences
19

10.47836/mjmhs.19.s17.12
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85185189375&doi=10.47836%2fmjmhs.19.s17.12&partnerID=40&md5=06f91bf50a45f0b914e1f47c5290c9b2
Introduction: Dengue fever is a significant public health issue worldwide. Geographic Information System is a powerful tool in public health, allowing for the analysis and visualisation of spatial data to understand disease distribution and identify clusters of cases. Therefore, this study aims to determine the spatiotemporal distribution of dengue cases in Sabah. Methods: Quantum Geospatial Information System (QGIS) and GeoDa software were used to determine the spatial distribution, pattern, and cluster analysis. Results: The spatial distribution of dengue cases shifted, with most cases concentrated on the east coast of Sabah. The distribution of dengue cases in Beluran, Tenom, Kota Marudu, Kudat, Keningau, and Papar changed from 2017 to 2020. The scatter plots of Moran’s index values were generated to analyse the spatial clustering of dengue cases in Sabah over four years: 2017 (Moran’s index = 0.271), 2018 (Moran’s index = 0.333), 2019 (Moran’s index = 0.367), and 2020 (Moran’s index = 0.294). The statistical significance of clustering was established by observing p-values below the threshold of 0.05 for all four years. Local indicators of spatial association showed the spatial autocorrelation pattern of high-high (hotspot) areas with elevated dengue incidence and low-low (cold-spot) areas with relatively lower dengue rates. Conclusion: This study has provided evidence of dengue case distribution patterns, spatial clustering, and hotspot and coldspot areas. Prioritising these clusters can improve planning and resource allocation for more efficient dengue prevention and control. © 2023 Universiti Putra Malaysia Press. All rights reserved.
Universiti Putra Malaysia Press
16758544
English
Article
All Open Access; Bronze Open Access
author Kunasagran P.D.; Rahim S.S.S.A.; Jeffree M.S.; Atil A.; Hidrus A.; Mokti K.; Abd Rahim M.A.; Muyou A.J.; Mujin S.M.; Ali N.; Taib N.Md.; Zali S.M.I.R.M.; Dapari R.; Azhar Z.I.; Khoon K.T.
spellingShingle Kunasagran P.D.; Rahim S.S.S.A.; Jeffree M.S.; Atil A.; Hidrus A.; Mokti K.; Abd Rahim M.A.; Muyou A.J.; Mujin S.M.; Ali N.; Taib N.Md.; Zali S.M.I.R.M.; Dapari R.; Azhar Z.I.; Khoon K.T.
Spatio-temporal Analysis of Dengue Cases in Sabah
author_facet Kunasagran P.D.; Rahim S.S.S.A.; Jeffree M.S.; Atil A.; Hidrus A.; Mokti K.; Abd Rahim M.A.; Muyou A.J.; Mujin S.M.; Ali N.; Taib N.Md.; Zali S.M.I.R.M.; Dapari R.; Azhar Z.I.; Khoon K.T.
author_sort Kunasagran P.D.; Rahim S.S.S.A.; Jeffree M.S.; Atil A.; Hidrus A.; Mokti K.; Abd Rahim M.A.; Muyou A.J.; Mujin S.M.; Ali N.; Taib N.Md.; Zali S.M.I.R.M.; Dapari R.; Azhar Z.I.; Khoon K.T.
title Spatio-temporal Analysis of Dengue Cases in Sabah
title_short Spatio-temporal Analysis of Dengue Cases in Sabah
title_full Spatio-temporal Analysis of Dengue Cases in Sabah
title_fullStr Spatio-temporal Analysis of Dengue Cases in Sabah
title_full_unstemmed Spatio-temporal Analysis of Dengue Cases in Sabah
title_sort Spatio-temporal Analysis of Dengue Cases in Sabah
publishDate 2023
container_title Malaysian Journal of Medicine and Health Sciences
container_volume 19
container_issue
doi_str_mv 10.47836/mjmhs.19.s17.12
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85185189375&doi=10.47836%2fmjmhs.19.s17.12&partnerID=40&md5=06f91bf50a45f0b914e1f47c5290c9b2
description Introduction: Dengue fever is a significant public health issue worldwide. Geographic Information System is a powerful tool in public health, allowing for the analysis and visualisation of spatial data to understand disease distribution and identify clusters of cases. Therefore, this study aims to determine the spatiotemporal distribution of dengue cases in Sabah. Methods: Quantum Geospatial Information System (QGIS) and GeoDa software were used to determine the spatial distribution, pattern, and cluster analysis. Results: The spatial distribution of dengue cases shifted, with most cases concentrated on the east coast of Sabah. The distribution of dengue cases in Beluran, Tenom, Kota Marudu, Kudat, Keningau, and Papar changed from 2017 to 2020. The scatter plots of Moran’s index values were generated to analyse the spatial clustering of dengue cases in Sabah over four years: 2017 (Moran’s index = 0.271), 2018 (Moran’s index = 0.333), 2019 (Moran’s index = 0.367), and 2020 (Moran’s index = 0.294). The statistical significance of clustering was established by observing p-values below the threshold of 0.05 for all four years. Local indicators of spatial association showed the spatial autocorrelation pattern of high-high (hotspot) areas with elevated dengue incidence and low-low (cold-spot) areas with relatively lower dengue rates. Conclusion: This study has provided evidence of dengue case distribution patterns, spatial clustering, and hotspot and coldspot areas. Prioritising these clusters can improve planning and resource allocation for more efficient dengue prevention and control. © 2023 Universiti Putra Malaysia Press. All rights reserved.
publisher Universiti Putra Malaysia Press
issn 16758544
language English
format Article
accesstype All Open Access; Bronze Open Access
record_format scopus
collection Scopus
_version_ 1809677681045798912