Enhanced-Performance Triboelectric Nanogenerator Based on Polydimethylsiloxane/Barium Titanate/Graphene Quantum Dot Nanocomposites for Energy Harvesting

Triboelectric nanogenerators (TENGs) have been developed as promising energy-harvesting devices to effectively convert mechanical energy into electricity. TENGs use either organic or inorganic materials to initiate the triboelectrification process, followed by charge separation. In this study, a hig...

Full description

Bibliographic Details
Published in:ACS Omega
Main Author: Hatta F.F.; Mohammad Haniff M.A.S.; Ambri Mohamed M.
Format: Article
Language:English
Published: American Chemical Society 2024
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85184768117&doi=10.1021%2facsomega.3c07952&partnerID=40&md5=f18f96300386fbbda81ee539c0308232
Description
Summary:Triboelectric nanogenerators (TENGs) have been developed as promising energy-harvesting devices to effectively convert mechanical energy into electricity. TENGs use either organic or inorganic materials to initiate the triboelectrification process, followed by charge separation. In this study, a high-performance composite-based triboelectric nanogenerator (CTENG) device was fabricated, comprising polydimethylsiloxane (PDMS) as a polymeric matrix, barium titanite (BTO) nanopowders as dielectric fillers, and graphene quantum dots (GQDs) as conductive media. The PDMS/BTO/GQD composite film was prepared with GQDs doped into the mixture of PDMS/BTO and mechanically stirred. The composition of the GQD varied from 0 to 40 wt %. The composite was spin-coated onto flexible ITO on a PET sheet and dried in an oven at 80 °C for 24 h. The output performance of TENGs is enhanced by the increased concentration of 30 wt % GQD, which is 2 times higher than nanocomposite films without GQD. The PDMS/BTO/G30 TENG film depicted an increase in open-circuit voltage output (VOC), short-circuit current output (ISC), and power density reaching ∼310.0 V, ∼23.0 μA, and 1.6 W/m2, respectively. The simple and scalable process for the PDMS/BTO/GQD TENGs would benefit as a sustainable energy-harvesting system in small electronic devices. © 2024 The Authors. Published by American Chemical Society.
ISSN:24701343
DOI:10.1021/acsomega.3c07952