Combined Convective Transport of Williamson Hybrid Nanofluid over a Shrinking Sheet

In this study, the combined convective transport of Williamson hybrid nanofluid flow over a shrinking sheet containing Alumina (Al2O3) and Copper (Cu) nanoparticles with Engine Oil (EO) as its base fluid is investigated. The mathematical model is converted to similarity equations by suitable transfo...

全面介绍

书目详细资料
发表在:Journal of Advanced Research in Fluid Mechanics and Thermal Sciences
主要作者: Mokhtar M.; Kasim A.R.M.; Waini I.; Nordin N.S.; Sakidin H.; Sukri A.; Adytia D.
格式: 文件
语言:English
出版: Semarak Ilmu Publishing 2023
在线阅读:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85179921702&doi=10.37934%2farfmts.110.2.219235&partnerID=40&md5=7dfdf83f2fba40a0e0c30669d4edad72
实物特征
总结:In this study, the combined convective transport of Williamson hybrid nanofluid flow over a shrinking sheet containing Alumina (Al2O3) and Copper (Cu) nanoparticles with Engine Oil (EO) as its base fluid is investigated. The mathematical model is converted to similarity equations by suitable transformations. The bvp4c function in MATLAB is utilized to solve the similarity equations numerically. The comparison of the present model with the established model for verification purposes shows a reasonable agreement. The influences of several fluid parameters on the fluid flow behaviour are analysed. Outcomes reveal the increment in combined convective transport and suction parameter improve the performance of heat transport of the fluid. Furthermore, the non-Newtonian Williamson hybrid nanofluid provided better heat transport performance compared to nanofluid with the same value of nanoparticle concentration. © 2023, Semarak Ilmu Publishing. All rights reserved.
ISSN:22897879
DOI:10.37934/arfmts.110.2.219235