Autonomous anomaly detection for streaming data
Anomaly detection from data streams is a hotly studied topic in the machine learning domain. It is widely considered a challenging task because the underlying patterns exhibited by the streaming data may dynamically change at any time. In this paper, a new algorithm is proposed to detect anomalies a...
Published in: | Knowledge-Based Systems |
---|---|
Main Author: | Iqbal Basheer M.Y.; Mohd Ali A.; Abdul Hamid N.H.; Mohd Ariffin M.A.; Osman R.; Nordin S.; Gu X. |
Format: | Article |
Language: | English |
Published: |
Elsevier B.V.
2024
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85178997887&doi=10.1016%2fj.knosys.2023.111235&partnerID=40&md5=66f0acd2d0fdb446021eb5e1d4bab41f |
Similar Items
-
Autonomous anomaly detection for streaming data
by: Basheer, et al.
Published: (2024) -
Detecting Flood in Real-Time Weather Data Using Anomaly Detection Algorithm
by: Basheer M.Y.I.; Ali A.M.; Hamid N.H.A.; Osman R.; Nordin S.; Ariffin M.A.M.
Published: (2023) -
Empowering anomaly detection algorithm: a review
by: Basheer M.Y.I.; Ali A.M.; Osman R.; Hamid N.H.A.; Nordin S.; Ariffin M.A.M.; Martínez J.A.I.
Published: (2024) -
Big data in real time to detect anomalies
by: Abinaya N.; Kumar A.V.S.; Chaturvedi A.; Musirin I.B.; Rao M.; Kaur G.; Kaur S.; Saleh O.S.; Malladi R.; Arya N.
Published: (2024) -
Multi-Modal Fusion for Multi-Task Fuzzy Detection of Rail Anomalies
by: Liyuan Y.; Osman G.; Abdul Rahman S.; Mustapha M.F.
Published: (2024)