Numerical Solution of Van der Pol Equation via Fix and Variable Step Size Methods
This paper devotes to the numerical simulation of Van der Pol equation using fix and variable step size methods. The solution is obtained via two different methods of Runge-Kutta of order 5 (RK5) for fix step size and Runge-Kutta Fehlberg method (RKF) of order 5 for variable step size. The algorithm...
Published in: | AIP Conference Proceedings |
---|---|
Main Author: | Mutalib N.J.A.; Rosli N.; Ariffin N.A.N. |
Format: | Conference paper |
Language: | English |
Published: |
American Institute of Physics Inc.
2023
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85177549754&doi=10.1063%2f5.0152266&partnerID=40&md5=fe790a242548e810438e4796cbb74775 |
Similar Items
-
Non-convergence partitioning strategy for solving van der Pol's equations
by: Othman K.I.; Suleiman M.; Ibrahim Z.B.
Published: (2018) -
The Performance of Fixed Step Size and Adaptive Step Size Numerical Methods for Solving Deterministic Cell-Growth Models
by: Satar N.A.A.; Ariffin N.A.N.
Published: (2024) -
Adaptive Step Size Stochastic Runge-Kutta Method of Order 1.5(1.0) for Stochastic Differential Equations (SDEs)
by: Mutalib N.J.A.; Rosli N.; Ariffin N.A.N.
Published: (2023) -
Constructing trifunctional MoTe2/As van der Waals heterostructures for versatile energy applications
by: Chang Y.H.R.; Yeoh K.H.; Jiang J.; Lim T.L.; Yong Y.S.; Low L.C.; Tuh M.H.
Published: (2022) -
Achieving type-II SnSSe/as van der waals heterostructure with satisfactory oxygen tolerance for optoelectronic and photovoltaic applications
by: Robin Chang Y.H.; Jiang J.; Yeoh K.H.; Abdullahi Y.Z.; Khong H.Y.; Tuh M.H.; Liew F.K.; Liew Y.L.
Published: (2023)