Numerical Solution of Van der Pol Equation via Fix and Variable Step Size Methods

This paper devotes to the numerical simulation of Van der Pol equation using fix and variable step size methods. The solution is obtained via two different methods of Runge-Kutta of order 5 (RK5) for fix step size and Runge-Kutta Fehlberg method (RKF) of order 5 for variable step size. The algorithm...

Full description

Bibliographic Details
Published in:AIP Conference Proceedings
Main Author: Mutalib N.J.A.; Rosli N.; Ariffin N.A.N.
Format: Conference paper
Language:English
Published: American Institute of Physics Inc. 2023
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85177549754&doi=10.1063%2f5.0152266&partnerID=40&md5=fe790a242548e810438e4796cbb74775
id 2-s2.0-85177549754
spelling 2-s2.0-85177549754
Mutalib N.J.A.; Rosli N.; Ariffin N.A.N.
Numerical Solution of Van der Pol Equation via Fix and Variable Step Size Methods
2023
AIP Conference Proceedings
2746
1
10.1063/5.0152266
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85177549754&doi=10.1063%2f5.0152266&partnerID=40&md5=fe790a242548e810438e4796cbb74775
This paper devotes to the numerical simulation of Van der Pol equation using fix and variable step size methods. The solution is obtained via two different methods of Runge-Kutta of order 5 (RK5) for fix step size and Runge-Kutta Fehlberg method (RKF) of order 5 for variable step size. The algorithms of fix and variable step size of RK5 and RKF methods, respectively are developed and coded in Matlab for model simulation. Local and global errors are computed for non-stiff and stiff problem of Van der Pol equation. RKF method using variable step size show low values of error for stiff problem with less number of iteration, hence indicate good performance of the method in approximating the solution of the Van der Pol model. © 2023 American Institute of Physics Inc.. All rights reserved.
American Institute of Physics Inc.
0094243X
English
Conference paper

author Mutalib N.J.A.; Rosli N.; Ariffin N.A.N.
spellingShingle Mutalib N.J.A.; Rosli N.; Ariffin N.A.N.
Numerical Solution of Van der Pol Equation via Fix and Variable Step Size Methods
author_facet Mutalib N.J.A.; Rosli N.; Ariffin N.A.N.
author_sort Mutalib N.J.A.; Rosli N.; Ariffin N.A.N.
title Numerical Solution of Van der Pol Equation via Fix and Variable Step Size Methods
title_short Numerical Solution of Van der Pol Equation via Fix and Variable Step Size Methods
title_full Numerical Solution of Van der Pol Equation via Fix and Variable Step Size Methods
title_fullStr Numerical Solution of Van der Pol Equation via Fix and Variable Step Size Methods
title_full_unstemmed Numerical Solution of Van der Pol Equation via Fix and Variable Step Size Methods
title_sort Numerical Solution of Van der Pol Equation via Fix and Variable Step Size Methods
publishDate 2023
container_title AIP Conference Proceedings
container_volume 2746
container_issue 1
doi_str_mv 10.1063/5.0152266
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85177549754&doi=10.1063%2f5.0152266&partnerID=40&md5=fe790a242548e810438e4796cbb74775
description This paper devotes to the numerical simulation of Van der Pol equation using fix and variable step size methods. The solution is obtained via two different methods of Runge-Kutta of order 5 (RK5) for fix step size and Runge-Kutta Fehlberg method (RKF) of order 5 for variable step size. The algorithms of fix and variable step size of RK5 and RKF methods, respectively are developed and coded in Matlab for model simulation. Local and global errors are computed for non-stiff and stiff problem of Van der Pol equation. RKF method using variable step size show low values of error for stiff problem with less number of iteration, hence indicate good performance of the method in approximating the solution of the Van der Pol model. © 2023 American Institute of Physics Inc.. All rights reserved.
publisher American Institute of Physics Inc.
issn 0094243X
language English
format Conference paper
accesstype
record_format scopus
collection Scopus
_version_ 1809677777254744064