Numerical Solution of Van der Pol Equation via Fix and Variable Step Size Methods
This paper devotes to the numerical simulation of Van der Pol equation using fix and variable step size methods. The solution is obtained via two different methods of Runge-Kutta of order 5 (RK5) for fix step size and Runge-Kutta Fehlberg method (RKF) of order 5 for variable step size. The algorithm...
Published in: | AIP Conference Proceedings |
---|---|
Main Author: | |
Format: | Conference paper |
Language: | English |
Published: |
American Institute of Physics Inc.
2023
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85177549754&doi=10.1063%2f5.0152266&partnerID=40&md5=fe790a242548e810438e4796cbb74775 |
id |
2-s2.0-85177549754 |
---|---|
spelling |
2-s2.0-85177549754 Mutalib N.J.A.; Rosli N.; Ariffin N.A.N. Numerical Solution of Van der Pol Equation via Fix and Variable Step Size Methods 2023 AIP Conference Proceedings 2746 1 10.1063/5.0152266 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85177549754&doi=10.1063%2f5.0152266&partnerID=40&md5=fe790a242548e810438e4796cbb74775 This paper devotes to the numerical simulation of Van der Pol equation using fix and variable step size methods. The solution is obtained via two different methods of Runge-Kutta of order 5 (RK5) for fix step size and Runge-Kutta Fehlberg method (RKF) of order 5 for variable step size. The algorithms of fix and variable step size of RK5 and RKF methods, respectively are developed and coded in Matlab for model simulation. Local and global errors are computed for non-stiff and stiff problem of Van der Pol equation. RKF method using variable step size show low values of error for stiff problem with less number of iteration, hence indicate good performance of the method in approximating the solution of the Van der Pol model. © 2023 American Institute of Physics Inc.. All rights reserved. American Institute of Physics Inc. 0094243X English Conference paper |
author |
Mutalib N.J.A.; Rosli N.; Ariffin N.A.N. |
spellingShingle |
Mutalib N.J.A.; Rosli N.; Ariffin N.A.N. Numerical Solution of Van der Pol Equation via Fix and Variable Step Size Methods |
author_facet |
Mutalib N.J.A.; Rosli N.; Ariffin N.A.N. |
author_sort |
Mutalib N.J.A.; Rosli N.; Ariffin N.A.N. |
title |
Numerical Solution of Van der Pol Equation via Fix and Variable Step Size Methods |
title_short |
Numerical Solution of Van der Pol Equation via Fix and Variable Step Size Methods |
title_full |
Numerical Solution of Van der Pol Equation via Fix and Variable Step Size Methods |
title_fullStr |
Numerical Solution of Van der Pol Equation via Fix and Variable Step Size Methods |
title_full_unstemmed |
Numerical Solution of Van der Pol Equation via Fix and Variable Step Size Methods |
title_sort |
Numerical Solution of Van der Pol Equation via Fix and Variable Step Size Methods |
publishDate |
2023 |
container_title |
AIP Conference Proceedings |
container_volume |
2746 |
container_issue |
1 |
doi_str_mv |
10.1063/5.0152266 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85177549754&doi=10.1063%2f5.0152266&partnerID=40&md5=fe790a242548e810438e4796cbb74775 |
description |
This paper devotes to the numerical simulation of Van der Pol equation using fix and variable step size methods. The solution is obtained via two different methods of Runge-Kutta of order 5 (RK5) for fix step size and Runge-Kutta Fehlberg method (RKF) of order 5 for variable step size. The algorithms of fix and variable step size of RK5 and RKF methods, respectively are developed and coded in Matlab for model simulation. Local and global errors are computed for non-stiff and stiff problem of Van der Pol equation. RKF method using variable step size show low values of error for stiff problem with less number of iteration, hence indicate good performance of the method in approximating the solution of the Van der Pol model. © 2023 American Institute of Physics Inc.. All rights reserved. |
publisher |
American Institute of Physics Inc. |
issn |
0094243X |
language |
English |
format |
Conference paper |
accesstype |
|
record_format |
scopus |
collection |
Scopus |
_version_ |
1809677777254744064 |