FINGER KNUCKLE RECOGNITION WITH PCANET
This paper presents finger knuckle recognition system using feature extraction method, Principal Component Analysis Network (PCANet). Finger knuckle is one of the most secure traits in biometric system and convenient for personal recognition. In this work, a very simple deep learning network, PCANet...
Published in: | IET Conference Proceedings |
---|---|
Main Author: | Mukahar N. |
Format: | Conference paper |
Language: | English |
Published: |
Institution of Engineering and Technology
2022
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85174648057&doi=10.1049%2ficp.2022.2634&partnerID=40&md5=cf1bc27d52636f9a70709f88dd069475 |
Similar Items
-
Performance Comparison of PCANet-Based Deep Learning Techniques for Palmprint Recognition
by: Mukahar N.
Published: (2023) -
IoT-Based Monitoring Lady's Finger Plant
by: Kassim A.H.; Amiruddin M.Z.; Talib Mat Yusoh M.A.; Mat Zain M.Y.; Raja Daud R.M.N.; Ismail Marzuki M.S.N.
Published: (2024) -
IoT-Based Monitoring Lady's Finger Plant
by: Kassim, et al.
Published: (2024) -
Resistive-based Sensor System for Prosthetic Fingers Application
by: Zainuddin N.; Anuar N.F.; Mansur A.L.; Fauzi N.I.M.; Hanim W.F.; Herman S.H.
Published: (2015) -
Mu Rhythm EEG Signals Analysis during Fingers Movements in Mirror Therapy
by: Mansor W.; Jaafar N.; Morawakage D.P.; Kamaru Zaman F.H.; Che Daud A.Z.; Ahmad Roslan N.F.; Hassan Z.
Published: (2022)