PV Cell Defects Classification in Electroluminescence Images using Gradient Histogram (HOG)

This paper presents an automated approach for the inspection of photovoltaic (PV) cells using electroluminescence (EL) imaging. Histogram of Gradient (HoG) features are extracted from EL images and then reduced using Principal Component Analysis (PCA). The reduced features are then classified using...

Full description

Bibliographic Details
Published in:IEEE Symposium on Wireless Technology and Applications, ISWTA
Main Author: Yani A.N.A.; Shariff K.K.M.; Othman Z.; Sulaiman S.I.; Zakaria N.A.Z.; Yassin A.I.
Format: Conference paper
Language:English
Published: IEEE Computer Society 2023
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85174315103&doi=10.1109%2fISWTA58588.2023.10249747&partnerID=40&md5=3157db69cc85b3b41b868599d571e849
id 2-s2.0-85174315103
spelling 2-s2.0-85174315103
Yani A.N.A.; Shariff K.K.M.; Othman Z.; Sulaiman S.I.; Zakaria N.A.Z.; Yassin A.I.
PV Cell Defects Classification in Electroluminescence Images using Gradient Histogram (HOG)
2023
IEEE Symposium on Wireless Technology and Applications, ISWTA
2023-August

10.1109/ISWTA58588.2023.10249747
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85174315103&doi=10.1109%2fISWTA58588.2023.10249747&partnerID=40&md5=3157db69cc85b3b41b868599d571e849
This paper presents an automated approach for the inspection of photovoltaic (PV) cells using electroluminescence (EL) imaging. Histogram of Gradient (HoG) features are extracted from EL images and then reduced using Principal Component Analysis (PCA). The reduced features are then classified using a Support Vector Machine (SVM) with a linear kernel. The performance of the model is evaluated using a publicly available dataset of EL images. Results show that the proposed method is able to classify EL images of PV cells with an accuracy of 100% for PV cells of size 4 and 16. The evaluation of the model is faster and more efficient when PCA is used. The proposed method is a promising tool for automating the process of EL image inspection. © 2023 IEEE.
IEEE Computer Society
23247843
English
Conference paper

author Yani A.N.A.; Shariff K.K.M.; Othman Z.; Sulaiman S.I.; Zakaria N.A.Z.; Yassin A.I.
spellingShingle Yani A.N.A.; Shariff K.K.M.; Othman Z.; Sulaiman S.I.; Zakaria N.A.Z.; Yassin A.I.
PV Cell Defects Classification in Electroluminescence Images using Gradient Histogram (HOG)
author_facet Yani A.N.A.; Shariff K.K.M.; Othman Z.; Sulaiman S.I.; Zakaria N.A.Z.; Yassin A.I.
author_sort Yani A.N.A.; Shariff K.K.M.; Othman Z.; Sulaiman S.I.; Zakaria N.A.Z.; Yassin A.I.
title PV Cell Defects Classification in Electroluminescence Images using Gradient Histogram (HOG)
title_short PV Cell Defects Classification in Electroluminescence Images using Gradient Histogram (HOG)
title_full PV Cell Defects Classification in Electroluminescence Images using Gradient Histogram (HOG)
title_fullStr PV Cell Defects Classification in Electroluminescence Images using Gradient Histogram (HOG)
title_full_unstemmed PV Cell Defects Classification in Electroluminescence Images using Gradient Histogram (HOG)
title_sort PV Cell Defects Classification in Electroluminescence Images using Gradient Histogram (HOG)
publishDate 2023
container_title IEEE Symposium on Wireless Technology and Applications, ISWTA
container_volume 2023-August
container_issue
doi_str_mv 10.1109/ISWTA58588.2023.10249747
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85174315103&doi=10.1109%2fISWTA58588.2023.10249747&partnerID=40&md5=3157db69cc85b3b41b868599d571e849
description This paper presents an automated approach for the inspection of photovoltaic (PV) cells using electroluminescence (EL) imaging. Histogram of Gradient (HoG) features are extracted from EL images and then reduced using Principal Component Analysis (PCA). The reduced features are then classified using a Support Vector Machine (SVM) with a linear kernel. The performance of the model is evaluated using a publicly available dataset of EL images. Results show that the proposed method is able to classify EL images of PV cells with an accuracy of 100% for PV cells of size 4 and 16. The evaluation of the model is faster and more efficient when PCA is used. The proposed method is a promising tool for automating the process of EL image inspection. © 2023 IEEE.
publisher IEEE Computer Society
issn 23247843
language English
format Conference paper
accesstype
record_format scopus
collection Scopus
_version_ 1812871797708685312