A spatiotemporal prediction model for light pollution in conservation areas using remote sensing datasets

Artificial Light at Night (ALAN) significantly threatens protected areas from urbanization. As urbanization continues to grow, there is a need for forecasting future light pollution and ALAN for the protected areas in Indonesia. This study proposes a four-step computational model for forecasting spa...

Full description

Bibliographic Details
Published in:Decision Analytics Journal
Main Author: Riza L.S.; Putra Z.A.Y.; Firdaus M.F.Y.; Trihutama F.Z.; Izzuddin A.; Utama J.A.; Samah K.A.F.A.; Herdiwijaya D.; NQZ R.A.; Mumpuni E.S.
Format: Article
Language:English
Published: Elsevier Inc. 2023
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85173669087&doi=10.1016%2fj.dajour.2023.100334&partnerID=40&md5=06d8f8f56b0269ba11b42e638391f770
id 2-s2.0-85173669087
spelling 2-s2.0-85173669087
Riza L.S.; Putra Z.A.Y.; Firdaus M.F.Y.; Trihutama F.Z.; Izzuddin A.; Utama J.A.; Samah K.A.F.A.; Herdiwijaya D.; NQZ R.A.; Mumpuni E.S.
A spatiotemporal prediction model for light pollution in conservation areas using remote sensing datasets
2023
Decision Analytics Journal
9

10.1016/j.dajour.2023.100334
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85173669087&doi=10.1016%2fj.dajour.2023.100334&partnerID=40&md5=06d8f8f56b0269ba11b42e638391f770
Artificial Light at Night (ALAN) significantly threatens protected areas from urbanization. As urbanization continues to grow, there is a need for forecasting future light pollution and ALAN for the protected areas in Indonesia. This study proposes a four-step computational model for forecasting spatial–temporal light pollution in nine protected areas in Indonesia via spatiotemporal modeling and linear models. The four steps for predicting spatial–temporal light pollution are (i) data collection, (ii) data pre-processing, (iii) model and prediction of population, and (iv) model and prediction of light pollution. Two critical data must be provided: population data from the review area and light pollution data generated by the Earth Observations Group (EOG) at the National Oceanic and Atmospheric Administration (NOAA)/National Centers for Environmental Information (NCEI). We are using nine conservation areas in Indonesia, including the Kuningan Botanical Gardens, Bosscha Observatory, Timau Kupang National Observatory, Sermo Reservoir, Mount Batur Geopark, Sewu Mountains Geopark, Mount Rinjani Geopark, Lake Toba Geopark, and Belitong Geopark. The developed model involves a linear model to predict ALAN with spatial–temporal modeling. We present long-term predictions for the next 20 years. © 2023 The Author(s)
Elsevier Inc.
27726622
English
Article
All Open Access; Gold Open Access
author Riza L.S.; Putra Z.A.Y.; Firdaus M.F.Y.; Trihutama F.Z.; Izzuddin A.; Utama J.A.; Samah K.A.F.A.; Herdiwijaya D.; NQZ R.A.; Mumpuni E.S.
spellingShingle Riza L.S.; Putra Z.A.Y.; Firdaus M.F.Y.; Trihutama F.Z.; Izzuddin A.; Utama J.A.; Samah K.A.F.A.; Herdiwijaya D.; NQZ R.A.; Mumpuni E.S.
A spatiotemporal prediction model for light pollution in conservation areas using remote sensing datasets
author_facet Riza L.S.; Putra Z.A.Y.; Firdaus M.F.Y.; Trihutama F.Z.; Izzuddin A.; Utama J.A.; Samah K.A.F.A.; Herdiwijaya D.; NQZ R.A.; Mumpuni E.S.
author_sort Riza L.S.; Putra Z.A.Y.; Firdaus M.F.Y.; Trihutama F.Z.; Izzuddin A.; Utama J.A.; Samah K.A.F.A.; Herdiwijaya D.; NQZ R.A.; Mumpuni E.S.
title A spatiotemporal prediction model for light pollution in conservation areas using remote sensing datasets
title_short A spatiotemporal prediction model for light pollution in conservation areas using remote sensing datasets
title_full A spatiotemporal prediction model for light pollution in conservation areas using remote sensing datasets
title_fullStr A spatiotemporal prediction model for light pollution in conservation areas using remote sensing datasets
title_full_unstemmed A spatiotemporal prediction model for light pollution in conservation areas using remote sensing datasets
title_sort A spatiotemporal prediction model for light pollution in conservation areas using remote sensing datasets
publishDate 2023
container_title Decision Analytics Journal
container_volume 9
container_issue
doi_str_mv 10.1016/j.dajour.2023.100334
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85173669087&doi=10.1016%2fj.dajour.2023.100334&partnerID=40&md5=06d8f8f56b0269ba11b42e638391f770
description Artificial Light at Night (ALAN) significantly threatens protected areas from urbanization. As urbanization continues to grow, there is a need for forecasting future light pollution and ALAN for the protected areas in Indonesia. This study proposes a four-step computational model for forecasting spatial–temporal light pollution in nine protected areas in Indonesia via spatiotemporal modeling and linear models. The four steps for predicting spatial–temporal light pollution are (i) data collection, (ii) data pre-processing, (iii) model and prediction of population, and (iv) model and prediction of light pollution. Two critical data must be provided: population data from the review area and light pollution data generated by the Earth Observations Group (EOG) at the National Oceanic and Atmospheric Administration (NOAA)/National Centers for Environmental Information (NCEI). We are using nine conservation areas in Indonesia, including the Kuningan Botanical Gardens, Bosscha Observatory, Timau Kupang National Observatory, Sermo Reservoir, Mount Batur Geopark, Sewu Mountains Geopark, Mount Rinjani Geopark, Lake Toba Geopark, and Belitong Geopark. The developed model involves a linear model to predict ALAN with spatial–temporal modeling. We present long-term predictions for the next 20 years. © 2023 The Author(s)
publisher Elsevier Inc.
issn 27726622
language English
format Article
accesstype All Open Access; Gold Open Access
record_format scopus
collection Scopus
_version_ 1809678015628574720