On local antimagic chromatic numbers of circulant graphs join with null graphs or cycles

An edge labeling of a graph G = (V, E) is said to be local antimagic if there is a bijection f: E → {1,…, |E|} such that for any pair of adjacent vertices x and y, f+(x) ≠ f+(y), where the induced vertex label is f+(x) = Σ f (e), with e ranging over all the edges incident to x. The local antimagic c...

Full description

Bibliographic Details
Published in:Proyecciones
Main Author: Lau G.C.; Premalatha K.; Shiu W.C.; Nalliah M.
Format: Article
Language:English
Published: Universidad Catolica del Norte 2023
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85173040541&doi=10.22199%2fissn.0717-6279-5834&partnerID=40&md5=f52c4e0e3453bde11ed3a888799a0b75
id 2-s2.0-85173040541
spelling 2-s2.0-85173040541
Lau G.C.; Premalatha K.; Shiu W.C.; Nalliah M.
On local antimagic chromatic numbers of circulant graphs join with null graphs or cycles
2023
Proyecciones
42
5
10.22199/issn.0717-6279-5834
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85173040541&doi=10.22199%2fissn.0717-6279-5834&partnerID=40&md5=f52c4e0e3453bde11ed3a888799a0b75
An edge labeling of a graph G = (V, E) is said to be local antimagic if there is a bijection f: E → {1,…, |E|} such that for any pair of adjacent vertices x and y, f+(x) ≠ f+(y), where the induced vertex label is f+(x) = Σ f (e), with e ranging over all the edges incident to x. The local antimagic chromatic number of G, denoted by χla(G), is the minimum number of distinct induced vertex labels over all local antimagic labelings of G. For a bipartite circulant graph G, it is known that χ(G) = 2 but χla(G) ≥ 3. Moreover, χla(Cn ∨ K1) = 3 (respectively 4) if n is even (respectively odd). Let G be a graph of order m ≥ 3. In [Affirmative solutions on local antimagic chromatic number, Graphs Combin., 36 (2020), 1337—1354], the authors proved that if m ≡ n (mod 2) with χla(G) = χ(G), m?> n ≥ 4 and m ≥ n2/2, then χla(G ∨On) = χla(G)+1. In this paper, we show that the conditions can be omitted in obtaining χla(G ∨H) for some circulant graph G, and H is a null graph or a cycle. The local antimagic chromatic number of certain wheel related graphs are also obtained. © (2023), (SciELO-Scientific Electronic Library Online). All Rights Reserved.
Universidad Catolica del Norte
7160917
English
Article
All Open Access; Gold Open Access
author Lau G.C.; Premalatha K.; Shiu W.C.; Nalliah M.
spellingShingle Lau G.C.; Premalatha K.; Shiu W.C.; Nalliah M.
On local antimagic chromatic numbers of circulant graphs join with null graphs or cycles
author_facet Lau G.C.; Premalatha K.; Shiu W.C.; Nalliah M.
author_sort Lau G.C.; Premalatha K.; Shiu W.C.; Nalliah M.
title On local antimagic chromatic numbers of circulant graphs join with null graphs or cycles
title_short On local antimagic chromatic numbers of circulant graphs join with null graphs or cycles
title_full On local antimagic chromatic numbers of circulant graphs join with null graphs or cycles
title_fullStr On local antimagic chromatic numbers of circulant graphs join with null graphs or cycles
title_full_unstemmed On local antimagic chromatic numbers of circulant graphs join with null graphs or cycles
title_sort On local antimagic chromatic numbers of circulant graphs join with null graphs or cycles
publishDate 2023
container_title Proyecciones
container_volume 42
container_issue 5
doi_str_mv 10.22199/issn.0717-6279-5834
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85173040541&doi=10.22199%2fissn.0717-6279-5834&partnerID=40&md5=f52c4e0e3453bde11ed3a888799a0b75
description An edge labeling of a graph G = (V, E) is said to be local antimagic if there is a bijection f: E → {1,…, |E|} such that for any pair of adjacent vertices x and y, f+(x) ≠ f+(y), where the induced vertex label is f+(x) = Σ f (e), with e ranging over all the edges incident to x. The local antimagic chromatic number of G, denoted by χla(G), is the minimum number of distinct induced vertex labels over all local antimagic labelings of G. For a bipartite circulant graph G, it is known that χ(G) = 2 but χla(G) ≥ 3. Moreover, χla(Cn ∨ K1) = 3 (respectively 4) if n is even (respectively odd). Let G be a graph of order m ≥ 3. In [Affirmative solutions on local antimagic chromatic number, Graphs Combin., 36 (2020), 1337—1354], the authors proved that if m ≡ n (mod 2) with χla(G) = χ(G), m?> n ≥ 4 and m ≥ n2/2, then χla(G ∨On) = χla(G)+1. In this paper, we show that the conditions can be omitted in obtaining χla(G ∨H) for some circulant graph G, and H is a null graph or a cycle. The local antimagic chromatic number of certain wheel related graphs are also obtained. © (2023), (SciELO-Scientific Electronic Library Online). All Rights Reserved.
publisher Universidad Catolica del Norte
issn 7160917
language English
format Article
accesstype All Open Access; Gold Open Access
record_format scopus
collection Scopus
_version_ 1809677777164566528