Microwave assisted ZnCl2 conversion of noodle waste into activated carbon/ZnO composite: A circular approach to food waste utilization for crystal violet dye removal

In this study, microwave induced ZnCl2 activation was utilized to produce high surface area activated carbon (AC) from a readily available and sustainable precursor, namely food waste in the form of leftover noodles (LN). The resulting activated carbon composite is referred to as LNAC/ZnO. By using...

Full description

Bibliographic Details
Published in:Biomass Conversion and Biorefinery
Main Author: Zamri H.A.M.; Abdulhameed A.S.; Jawad A.H.; ALOthman Z.A.; Wilson L.D.
Format: Article
Language:English
Published: Springer Science and Business Media Deutschland GmbH 2024
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85171423271&doi=10.1007%2fs13399-023-04857-8&partnerID=40&md5=468865e289f87a690790aa9623ab79c1
id 2-s2.0-85171423271
spelling 2-s2.0-85171423271
Zamri H.A.M.; Abdulhameed A.S.; Jawad A.H.; ALOthman Z.A.; Wilson L.D.
Microwave assisted ZnCl2 conversion of noodle waste into activated carbon/ZnO composite: A circular approach to food waste utilization for crystal violet dye removal
2024
Biomass Conversion and Biorefinery
14
24
10.1007/s13399-023-04857-8
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85171423271&doi=10.1007%2fs13399-023-04857-8&partnerID=40&md5=468865e289f87a690790aa9623ab79c1
In this study, microwave induced ZnCl2 activation was utilized to produce high surface area activated carbon (AC) from a readily available and sustainable precursor, namely food waste in the form of leftover noodles (LN). The resulting activated carbon composite is referred to as LNAC/ZnO. By using food waste as the starting material, this research contributes to waste valorization and promotes the sustainable utilization of resources from food waste, which addresses the environmental challenges of food waste disposal by offering an eco-friendly solution. Analytical methods such as XRD, N2 adsorption/absorption isotherms, IR, pHpzc, and SEM-EDX were employed to characterize the structure and physicochemical properties of LNAC/ZnO. The elimination of organic dyes like crystal violet (CV) was studied by estimation of the CV adsorption efficiency by LNAC/ZnO. With the use of the response surface approach, the role of key adsorption parameters was investigated (A: LNAC/ZnO dosage (0.02-0.12 g/100 mL), B: pH (4-10), and C: duration (30-480 min)). The kinetic data were satisfactorily described by the pseudo-second-order model, and the CV adsorption isotherm profile matches the Freundlich model. The adsorption capacity of CV by LNAC/ZnO was 79.8 mg/g. The adsorption of CV by the LNAC/ZnO composite involves electrostatic forces, π-π stacking, pore filling, and H-bonding. Thus, the conversion of LN to LNAC/ZnO can potentially serve as an effective composite adsorbent for purifying wastewater containing cationic dyes and other chemical species. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023.
Springer Science and Business Media Deutschland GmbH
21906815
English
Article

author Zamri H.A.M.; Abdulhameed A.S.; Jawad A.H.; ALOthman Z.A.; Wilson L.D.
spellingShingle Zamri H.A.M.; Abdulhameed A.S.; Jawad A.H.; ALOthman Z.A.; Wilson L.D.
Microwave assisted ZnCl2 conversion of noodle waste into activated carbon/ZnO composite: A circular approach to food waste utilization for crystal violet dye removal
author_facet Zamri H.A.M.; Abdulhameed A.S.; Jawad A.H.; ALOthman Z.A.; Wilson L.D.
author_sort Zamri H.A.M.; Abdulhameed A.S.; Jawad A.H.; ALOthman Z.A.; Wilson L.D.
title Microwave assisted ZnCl2 conversion of noodle waste into activated carbon/ZnO composite: A circular approach to food waste utilization for crystal violet dye removal
title_short Microwave assisted ZnCl2 conversion of noodle waste into activated carbon/ZnO composite: A circular approach to food waste utilization for crystal violet dye removal
title_full Microwave assisted ZnCl2 conversion of noodle waste into activated carbon/ZnO composite: A circular approach to food waste utilization for crystal violet dye removal
title_fullStr Microwave assisted ZnCl2 conversion of noodle waste into activated carbon/ZnO composite: A circular approach to food waste utilization for crystal violet dye removal
title_full_unstemmed Microwave assisted ZnCl2 conversion of noodle waste into activated carbon/ZnO composite: A circular approach to food waste utilization for crystal violet dye removal
title_sort Microwave assisted ZnCl2 conversion of noodle waste into activated carbon/ZnO composite: A circular approach to food waste utilization for crystal violet dye removal
publishDate 2024
container_title Biomass Conversion and Biorefinery
container_volume 14
container_issue 24
doi_str_mv 10.1007/s13399-023-04857-8
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85171423271&doi=10.1007%2fs13399-023-04857-8&partnerID=40&md5=468865e289f87a690790aa9623ab79c1
description In this study, microwave induced ZnCl2 activation was utilized to produce high surface area activated carbon (AC) from a readily available and sustainable precursor, namely food waste in the form of leftover noodles (LN). The resulting activated carbon composite is referred to as LNAC/ZnO. By using food waste as the starting material, this research contributes to waste valorization and promotes the sustainable utilization of resources from food waste, which addresses the environmental challenges of food waste disposal by offering an eco-friendly solution. Analytical methods such as XRD, N2 adsorption/absorption isotherms, IR, pHpzc, and SEM-EDX were employed to characterize the structure and physicochemical properties of LNAC/ZnO. The elimination of organic dyes like crystal violet (CV) was studied by estimation of the CV adsorption efficiency by LNAC/ZnO. With the use of the response surface approach, the role of key adsorption parameters was investigated (A: LNAC/ZnO dosage (0.02-0.12 g/100 mL), B: pH (4-10), and C: duration (30-480 min)). The kinetic data were satisfactorily described by the pseudo-second-order model, and the CV adsorption isotherm profile matches the Freundlich model. The adsorption capacity of CV by LNAC/ZnO was 79.8 mg/g. The adsorption of CV by the LNAC/ZnO composite involves electrostatic forces, π-π stacking, pore filling, and H-bonding. Thus, the conversion of LN to LNAC/ZnO can potentially serve as an effective composite adsorbent for purifying wastewater containing cationic dyes and other chemical species. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023.
publisher Springer Science and Business Media Deutschland GmbH
issn 21906815
language English
format Article
accesstype
record_format scopus
collection Scopus
_version_ 1820775429585240064