Identifying Multiple Outliers in Linear Functional Relationship Model Using a Robust Clustering Method; [(Menentukan Data Terpencil Berganda bagi Model Linear Hubungan Fungsian Menggunakan Kaedah Berkelompok yang Lebih Kukuh)]

Outliers are some observation points outside the usual pattern of the other observations. It is essential to detect outliers as anomalous observations can affect the inference made in the analysis. In this study, we propose an efficient clustering procedure to identify multiple outliers in the linea...

Full description

Bibliographic Details
Published in:Sains Malaysiana
Main Author: Ghapor A.A.; Zubairi Y.Z.; Al Mamun S.M.D.; Hassan S.F.; Aruchunan E.; Mokhtar N.A.
Format: Article
Language:English
Published: Penerbit Universiti Kebangsaan Malaysia 2023
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85170407213&doi=10.17576%2fjsm-2023-5205-20&partnerID=40&md5=56a9d60db7ec262057fd2485d222a3d1
id 2-s2.0-85170407213
spelling 2-s2.0-85170407213
Ghapor A.A.; Zubairi Y.Z.; Al Mamun S.M.D.; Hassan S.F.; Aruchunan E.; Mokhtar N.A.
Identifying Multiple Outliers in Linear Functional Relationship Model Using a Robust Clustering Method; [(Menentukan Data Terpencil Berganda bagi Model Linear Hubungan Fungsian Menggunakan Kaedah Berkelompok yang Lebih Kukuh)]
2023
Sains Malaysiana
52
5
10.17576/jsm-2023-5205-20
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85170407213&doi=10.17576%2fjsm-2023-5205-20&partnerID=40&md5=56a9d60db7ec262057fd2485d222a3d1
Outliers are some observation points outside the usual pattern of the other observations. It is essential to detect outliers as anomalous observations can affect the inference made in the analysis. In this study, we propose an efficient clustering procedure to identify multiple outliers in the linear functional relationship model using the single linkage algorithm with the Euclidean distance as the similarity measure. A new robust cut-off point using the median and median absolute deviation for the tree heights to classify the potential outliers are proposed in this study. Experimental results from the simulation study suggest our proposed method is able to identify the presence of multiple outliers with very small probability of swamping and masking. Application in real data also shows that the proposed clustering method for this linear functional relationship model successfully detects the outliers, thus suggesting the method’s practicality in real-world problems. © 2023 Penerbit Universiti Kebangsaan Malaysia. All rights reserved.
Penerbit Universiti Kebangsaan Malaysia
01266039
English
Article
All Open Access; Gold Open Access; Green Open Access
author Ghapor A.A.; Zubairi Y.Z.; Al Mamun S.M.D.; Hassan S.F.; Aruchunan E.; Mokhtar N.A.
spellingShingle Ghapor A.A.; Zubairi Y.Z.; Al Mamun S.M.D.; Hassan S.F.; Aruchunan E.; Mokhtar N.A.
Identifying Multiple Outliers in Linear Functional Relationship Model Using a Robust Clustering Method; [(Menentukan Data Terpencil Berganda bagi Model Linear Hubungan Fungsian Menggunakan Kaedah Berkelompok yang Lebih Kukuh)]
author_facet Ghapor A.A.; Zubairi Y.Z.; Al Mamun S.M.D.; Hassan S.F.; Aruchunan E.; Mokhtar N.A.
author_sort Ghapor A.A.; Zubairi Y.Z.; Al Mamun S.M.D.; Hassan S.F.; Aruchunan E.; Mokhtar N.A.
title Identifying Multiple Outliers in Linear Functional Relationship Model Using a Robust Clustering Method; [(Menentukan Data Terpencil Berganda bagi Model Linear Hubungan Fungsian Menggunakan Kaedah Berkelompok yang Lebih Kukuh)]
title_short Identifying Multiple Outliers in Linear Functional Relationship Model Using a Robust Clustering Method; [(Menentukan Data Terpencil Berganda bagi Model Linear Hubungan Fungsian Menggunakan Kaedah Berkelompok yang Lebih Kukuh)]
title_full Identifying Multiple Outliers in Linear Functional Relationship Model Using a Robust Clustering Method; [(Menentukan Data Terpencil Berganda bagi Model Linear Hubungan Fungsian Menggunakan Kaedah Berkelompok yang Lebih Kukuh)]
title_fullStr Identifying Multiple Outliers in Linear Functional Relationship Model Using a Robust Clustering Method; [(Menentukan Data Terpencil Berganda bagi Model Linear Hubungan Fungsian Menggunakan Kaedah Berkelompok yang Lebih Kukuh)]
title_full_unstemmed Identifying Multiple Outliers in Linear Functional Relationship Model Using a Robust Clustering Method; [(Menentukan Data Terpencil Berganda bagi Model Linear Hubungan Fungsian Menggunakan Kaedah Berkelompok yang Lebih Kukuh)]
title_sort Identifying Multiple Outliers in Linear Functional Relationship Model Using a Robust Clustering Method; [(Menentukan Data Terpencil Berganda bagi Model Linear Hubungan Fungsian Menggunakan Kaedah Berkelompok yang Lebih Kukuh)]
publishDate 2023
container_title Sains Malaysiana
container_volume 52
container_issue 5
doi_str_mv 10.17576/jsm-2023-5205-20
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85170407213&doi=10.17576%2fjsm-2023-5205-20&partnerID=40&md5=56a9d60db7ec262057fd2485d222a3d1
description Outliers are some observation points outside the usual pattern of the other observations. It is essential to detect outliers as anomalous observations can affect the inference made in the analysis. In this study, we propose an efficient clustering procedure to identify multiple outliers in the linear functional relationship model using the single linkage algorithm with the Euclidean distance as the similarity measure. A new robust cut-off point using the median and median absolute deviation for the tree heights to classify the potential outliers are proposed in this study. Experimental results from the simulation study suggest our proposed method is able to identify the presence of multiple outliers with very small probability of swamping and masking. Application in real data also shows that the proposed clustering method for this linear functional relationship model successfully detects the outliers, thus suggesting the method’s practicality in real-world problems. © 2023 Penerbit Universiti Kebangsaan Malaysia. All rights reserved.
publisher Penerbit Universiti Kebangsaan Malaysia
issn 01266039
language English
format Article
accesstype All Open Access; Gold Open Access; Green Open Access
record_format scopus
collection Scopus
_version_ 1820775447512743936