Preliminary study on multiple imputation for nonresponse in survey data with feature selection
Missing data prediction is ubiquitous in survey research. Multiple imputation is a common approach for handling missing observation on survey data. Feature selection is a technique to find the best features from a dataset before building a predictive model for missing data. The mice package in R pro...
Published in: | AIP Conference Proceedings |
---|---|
Main Author: | Jasin A.M.; Asmat A. |
Format: | Conference paper |
Language: | English |
Published: |
American Institute of Physics Inc.
2023
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85166536489&doi=10.1063%2f5.0129514&partnerID=40&md5=1507078e030d5a2a896354e9e8f507f5 |
Similar Items
-
Comparisons of imputation methods on different types of survey research data: A continuous variable
by: Rahman H.A.A.; Hidayat T.; Rahman A.A.; Razif A.M.
Published: (2024) -
Assessing the Multiple Imputation Approach for Univariate Time Series Data of Geomagnetic Disturbance Event in Solar Cycle 24
by: Zainuddin A.; Hairuddin M.A.; Jusoh M.H.; Hashim M.H.; Benavides I.F.; Yassin A.I.M.
Published: (2023) -
Time Series Data and Recent Imputation Techniques for Missing Data: A Review
by: Zainuddin A.; Hairuddin M.A.; Yassin A.I.M.; Latiff Z.I.A.; Azhar A.
Published: (2022) -
Enhancing big data feature selection using a hybrid correlation-based feature selection
by: Mohamad M.; Selamat A.; Krejcar O.; Crespo R.G.; Herrera-Viedma E.; Fujita H.
Published: (2021) -
Missing data imputation of MAGDAS-9’s ground electromagnetism with supervised machine learning and conventional statistical analysis models
by: H. M.A.; K.A. N.D.; Md Tahir N.; Iffah Abd Latiff Z.; Huzaimy Jusoh M.; Akimasa Y.
Published: (2022)