Early detection of dysphoria using electroencephalogram affective modelling
Dysphoria is a trigger point for maladjusted individuals who cannot cope with disappointments and crushed expectations, resulting in negative emotions if it is not detected early. Individuals who suffer from dysphoria tend to deny their mental state. They try to hide, suppress, or ignore the symptom...
Published in: | International Journal of Electrical and Computer Engineering |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Published: |
Institute of Advanced Engineering and Science
2023
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164611194&doi=10.11591%2fijece.v13i5.pp5874-5884&partnerID=40&md5=3add0ee5f3efdf24ad81bc0a83bb2b06 |
id |
2-s2.0-85164611194 |
---|---|
spelling |
2-s2.0-85164611194 Kamaruddin N.; Nasir M.H.M.; Wahab A.; Harris F.C., Jr. Early detection of dysphoria using electroencephalogram affective modelling 2023 International Journal of Electrical and Computer Engineering 13 5 10.11591/ijece.v13i5.pp5874-5884 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164611194&doi=10.11591%2fijece.v13i5.pp5874-5884&partnerID=40&md5=3add0ee5f3efdf24ad81bc0a83bb2b06 Dysphoria is a trigger point for maladjusted individuals who cannot cope with disappointments and crushed expectations, resulting in negative emotions if it is not detected early. Individuals who suffer from dysphoria tend to deny their mental state. They try to hide, suppress, or ignore the symptoms, making one feel worse, unwanted, and unloved. Psychologists and psychiatrists identify dysphoria using standardized instruments like questionnaires and interviews. These methods can boast a high success rate. However, the limited number of trained psychologists and psychiatrists and the small number of health institutions focused on mental health limit access to early detection. In addition, the negative connotation and taboo about dysphoria discourage the public from openly seeking help. An alternative approach to collecting ‘pure’ data is proposed in this paper. The brain signals are captured using the electroencephalogram as the input to the machine learning approach to detect negative emotions. It was observed from the experimental results that participants who scored severe dysphoria recorded ‘fear’ emotion even before stimuli were presented during the eyes-close phase. This finding is crucial to further understanding the effect of dysphoria and can be used to study the correlation between dysphoria and negative emotions. © 2023 Institute of Advanced Engineering and Science. All rights reserved. Institute of Advanced Engineering and Science 20888708 English Article All Open Access; Gold Open Access |
author |
Kamaruddin N.; Nasir M.H.M.; Wahab A.; Harris F.C. Jr. |
spellingShingle |
Kamaruddin N.; Nasir M.H.M.; Wahab A.; Harris F.C. Jr. Early detection of dysphoria using electroencephalogram affective modelling |
author_facet |
Kamaruddin N.; Nasir M.H.M.; Wahab A.; Harris F.C. Jr. |
author_sort |
Kamaruddin N.; Nasir M.H.M.; Wahab A.; Harris F.C. |
title |
Early detection of dysphoria using electroencephalogram affective modelling |
title_short |
Early detection of dysphoria using electroencephalogram affective modelling |
title_full |
Early detection of dysphoria using electroencephalogram affective modelling |
title_fullStr |
Early detection of dysphoria using electroencephalogram affective modelling |
title_full_unstemmed |
Early detection of dysphoria using electroencephalogram affective modelling |
title_sort |
Early detection of dysphoria using electroencephalogram affective modelling |
publishDate |
2023 |
container_title |
International Journal of Electrical and Computer Engineering |
container_volume |
13 |
container_issue |
5 |
doi_str_mv |
10.11591/ijece.v13i5.pp5874-5884 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164611194&doi=10.11591%2fijece.v13i5.pp5874-5884&partnerID=40&md5=3add0ee5f3efdf24ad81bc0a83bb2b06 |
description |
Dysphoria is a trigger point for maladjusted individuals who cannot cope with disappointments and crushed expectations, resulting in negative emotions if it is not detected early. Individuals who suffer from dysphoria tend to deny their mental state. They try to hide, suppress, or ignore the symptoms, making one feel worse, unwanted, and unloved. Psychologists and psychiatrists identify dysphoria using standardized instruments like questionnaires and interviews. These methods can boast a high success rate. However, the limited number of trained psychologists and psychiatrists and the small number of health institutions focused on mental health limit access to early detection. In addition, the negative connotation and taboo about dysphoria discourage the public from openly seeking help. An alternative approach to collecting ‘pure’ data is proposed in this paper. The brain signals are captured using the electroencephalogram as the input to the machine learning approach to detect negative emotions. It was observed from the experimental results that participants who scored severe dysphoria recorded ‘fear’ emotion even before stimuli were presented during the eyes-close phase. This finding is crucial to further understanding the effect of dysphoria and can be used to study the correlation between dysphoria and negative emotions. © 2023 Institute of Advanced Engineering and Science. All rights reserved. |
publisher |
Institute of Advanced Engineering and Science |
issn |
20888708 |
language |
English |
format |
Article |
accesstype |
All Open Access; Gold Open Access |
record_format |
scopus |
collection |
Scopus |
_version_ |
1809677581336707072 |