Fine-tuning optimization of poly lactic acid impact strength with variation of plasticizer using simple supervised machine learning methods
The use of machine learning to fine-tune the properties of materials is a remarkable achievement in the 21st century. Three machine learning (ML) methods were used to fine-tune and optimize the impact strength of polylactic acid (PLA) with different plasticizers: KNN (K-nearest neighbors), SVR (Supp...
Published in: | Express Polymer Letters |
---|---|
Main Author: | Fatriansyah J.F.; Kustiyah E.; Surip S.N.; Federico A.; Pradana A.F.; Handayani A.S.; Jaafar M.; Dhaneswara D. |
Format: | Article |
Language: | English |
Published: |
BME-PT and GTE
2023
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164596409&doi=10.3144%2fexpresspolymlett.2023.71&partnerID=40&md5=adcc14241fb2e56fc067ab0e5d9396d2 |
Similar Items
-
Mechanical Property Prediction of Poly(Lactic Acid) Blends Using Deep Neural Network
by: Fatriansyah J.F.; Surip S.N.; Hartoyo F.
Published: (2022) -
Prediction of Glass Transition Temperature of Polymers Using Simple Machine Learning
by: Fatriansyah J.F.; Linuwih B.D.P.; Andreano Y.; Sari I.S.; Federico A.; Anis M.; Surip S.N.; Jaafar M.
Published: (2024) -
Prediction of Glass Transition Temperature of Polymers Using Simple Machine Learning
by: Fatriansyah, et al.
Published: (2024) -
Biodegradation properties of poly (lactic) acid reinforced by kenaf fibers
by: Surip S.N.; Jaafar W.N.R.W.; Azmi N.N.; Hassan N.A.
Published: (2016) -
Synthesis and optimization of Ni/Mo-impregnated kaolin-based ZSM-5 as a catalytic hydrocracking catalyst for heavy petroleum distillates
by: Dhaneswara D.; Fatriansyah J.F.; Sudiro T.; Harjanto S.; Mastuli M.S.; Federico A.; Ulfiati R.
Published: (2024)