Hybrid Lee-Carter Model with Adaptive Network of Fuzzy Inference System and Wavelet Functions; [Model Hibrid Lee-Carter dengan Rangkaian Adaptif Sistem Inferens Kabur dan Fungsi Gelombang Kecil]
Mortality studies are essential in determining the health status and demographic composition of a population. The Lee–Carter (LC) modelling framework is extended to incorporate the macroeconomic variables that affect mortality, especially in forecasting. This paper makes several major contributions....
Published in: | Sains Malaysiana |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Penerbit Universiti Kebangsaan Malaysia
2023
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85154066876&doi=10.17576%2fjsm-2023-5203-23&partnerID=40&md5=3ccd1d2a2b8ece3053d2a20dcb0c85f9 |
id |
2-s2.0-85154066876 |
---|---|
spelling |
2-s2.0-85154066876 Jaber J.J.; Yaacob N.A.; Alwadi S. Hybrid Lee-Carter Model with Adaptive Network of Fuzzy Inference System and Wavelet Functions; [Model Hibrid Lee-Carter dengan Rangkaian Adaptif Sistem Inferens Kabur dan Fungsi Gelombang Kecil] 2023 Sains Malaysiana 52 3 10.17576/jsm-2023-5203-23 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85154066876&doi=10.17576%2fjsm-2023-5203-23&partnerID=40&md5=3ccd1d2a2b8ece3053d2a20dcb0c85f9 Mortality studies are essential in determining the health status and demographic composition of a population. The Lee–Carter (LC) modelling framework is extended to incorporate the macroeconomic variables that affect mortality, especially in forecasting. This paper makes several major contributions. First, a new model (LC-WT-ANFIS) employing the adaptive network-based fuzzy inference system (ANFIS) was proposed in conjunction with a nonlinear spectral model of maximum overlapping discrete wavelet transform (MODWT) that includes five mathematical functions, namely, Haar, Daubechies (d4), least square (la8), best localization (bl14), and Coiflet (c6) to enhance the forecasting accuracy of the LC model. Annual mortality data was collected from five countries (Australia, England, France, Japan, and the USA) from 1950 to 2016. Second, we selected gross domestic product (GDP), unemployment rate (UR), and inflation rate (IF) as input values according to correlation and multiple regressions. The input variables in this study were obtained from the World Bank and Datastream. The output variable was collected from the mortality rates in Human Mortality Database. Finally, the LC model’s projected log of death rates was compared with wavelet filters and the traditional LC model. The performance of the proposed model (LC-WT-ANFIS) was evaluated based on mean absolute percentage error (MAPE) and mean error (ME). Results showed that the LC-WT-ANFIS model performed better than the traditional model. Therefore, the proposed forecasting model is capable of projecting mortality rates. © 2023 Penerbit Universiti Kebangsaan Malaysia. All rights reserved. Penerbit Universiti Kebangsaan Malaysia 1266039 English Article All Open Access; Gold Open Access |
author |
Jaber J.J.; Yaacob N.A.; Alwadi S. |
spellingShingle |
Jaber J.J.; Yaacob N.A.; Alwadi S. Hybrid Lee-Carter Model with Adaptive Network of Fuzzy Inference System and Wavelet Functions; [Model Hibrid Lee-Carter dengan Rangkaian Adaptif Sistem Inferens Kabur dan Fungsi Gelombang Kecil] |
author_facet |
Jaber J.J.; Yaacob N.A.; Alwadi S. |
author_sort |
Jaber J.J.; Yaacob N.A.; Alwadi S. |
title |
Hybrid Lee-Carter Model with Adaptive Network of Fuzzy Inference System and Wavelet Functions; [Model Hibrid Lee-Carter dengan Rangkaian Adaptif Sistem Inferens Kabur dan Fungsi Gelombang Kecil] |
title_short |
Hybrid Lee-Carter Model with Adaptive Network of Fuzzy Inference System and Wavelet Functions; [Model Hibrid Lee-Carter dengan Rangkaian Adaptif Sistem Inferens Kabur dan Fungsi Gelombang Kecil] |
title_full |
Hybrid Lee-Carter Model with Adaptive Network of Fuzzy Inference System and Wavelet Functions; [Model Hibrid Lee-Carter dengan Rangkaian Adaptif Sistem Inferens Kabur dan Fungsi Gelombang Kecil] |
title_fullStr |
Hybrid Lee-Carter Model with Adaptive Network of Fuzzy Inference System and Wavelet Functions; [Model Hibrid Lee-Carter dengan Rangkaian Adaptif Sistem Inferens Kabur dan Fungsi Gelombang Kecil] |
title_full_unstemmed |
Hybrid Lee-Carter Model with Adaptive Network of Fuzzy Inference System and Wavelet Functions; [Model Hibrid Lee-Carter dengan Rangkaian Adaptif Sistem Inferens Kabur dan Fungsi Gelombang Kecil] |
title_sort |
Hybrid Lee-Carter Model with Adaptive Network of Fuzzy Inference System and Wavelet Functions; [Model Hibrid Lee-Carter dengan Rangkaian Adaptif Sistem Inferens Kabur dan Fungsi Gelombang Kecil] |
publishDate |
2023 |
container_title |
Sains Malaysiana |
container_volume |
52 |
container_issue |
3 |
doi_str_mv |
10.17576/jsm-2023-5203-23 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85154066876&doi=10.17576%2fjsm-2023-5203-23&partnerID=40&md5=3ccd1d2a2b8ece3053d2a20dcb0c85f9 |
description |
Mortality studies are essential in determining the health status and demographic composition of a population. The Lee–Carter (LC) modelling framework is extended to incorporate the macroeconomic variables that affect mortality, especially in forecasting. This paper makes several major contributions. First, a new model (LC-WT-ANFIS) employing the adaptive network-based fuzzy inference system (ANFIS) was proposed in conjunction with a nonlinear spectral model of maximum overlapping discrete wavelet transform (MODWT) that includes five mathematical functions, namely, Haar, Daubechies (d4), least square (la8), best localization (bl14), and Coiflet (c6) to enhance the forecasting accuracy of the LC model. Annual mortality data was collected from five countries (Australia, England, France, Japan, and the USA) from 1950 to 2016. Second, we selected gross domestic product (GDP), unemployment rate (UR), and inflation rate (IF) as input values according to correlation and multiple regressions. The input variables in this study were obtained from the World Bank and Datastream. The output variable was collected from the mortality rates in Human Mortality Database. Finally, the LC model’s projected log of death rates was compared with wavelet filters and the traditional LC model. The performance of the proposed model (LC-WT-ANFIS) was evaluated based on mean absolute percentage error (MAPE) and mean error (ME). Results showed that the LC-WT-ANFIS model performed better than the traditional model. Therefore, the proposed forecasting model is capable of projecting mortality rates. © 2023 Penerbit Universiti Kebangsaan Malaysia. All rights reserved. |
publisher |
Penerbit Universiti Kebangsaan Malaysia |
issn |
1266039 |
language |
English |
format |
Article |
accesstype |
All Open Access; Gold Open Access |
record_format |
scopus |
collection |
Scopus |
_version_ |
1809677888355565568 |