A review on object detection for autonomous mobile robot

The advancement of autonomous mobile robots (AMR) is vastly being discovered and applied to several industries. AMR contributes to the development of artificial intelligence (AI), which focuses on the growth of human-interaction systems. However, it is safe to understand that mobile robots work clos...

Full description

Bibliographic Details
Published in:IAES International Journal of Artificial Intelligence
Main Author: Abdul-Khalil S.; Abdul-Rahman S.; Mutalib S.; Kamarudin S.I.; Kamaruddin S.S.
Format: Review
Language:English
Published: Institute of Advanced Engineering and Science 2023
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85152909460&doi=10.11591%2fijai.v12.i3.pp1033-1043&partnerID=40&md5=61c6009c173708d2ad3df5c1f7230f92
Description
Summary:The advancement of autonomous mobile robots (AMR) is vastly being discovered and applied to several industries. AMR contributes to the development of artificial intelligence (AI), which focuses on the growth of human-interaction systems. However, it is safe to understand that mobile robots work closely in real-time and under changing surroundings. Similarly, some limitations may affect the efficiency of mobile robots. Thus, to improve the system's efficiency and accuracy, mobile robots should adopt the ability to detect incoming obstacles accurately. This paper presents the findings of a brief technology review aimed at identifying the current state of the art and future needs for AMR in object detection. This review paper is presented in the form of a narrative-literature review. Review articles were collected from 2015 until 2022 from journals or conference papers from well-known sources like IEEE Xplore, Science Direct, Scopus, and Web of Science (WOS). The analysis of the articles was discussed in four main topics, AI, object detection, AMR, and deep learning. © 2023, Institute of Advanced Engineering and Science. All rights reserved.
ISSN:20894872
DOI:10.11591/ijai.v12.i3.pp1033-1043