Optimization of Precious Metals Recovery from Electronic Waste by Chromobacterium violaceum Using Response Surface Methodology (RSM)

An effective recovery technology will be valuable in the future because the concentration of the precious metal contained in the source can be a key driver in recycling technology. This study aims to use response surface methodology (RSM) through Minitab software to discover the optimum oxygen level...

Full description

Bibliographic Details
Published in:Bioinorganic Chemistry and Applications
Main Author: Abdol Jani W.N.F.; Suja' F.; Sayed Jamaludin S.I.; Mohamad N.F.; Abdul Rani N.H.
Format: Article
Language:English
Published: Hindawi Limited 2023
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85152795095&doi=10.1155%2f2023%2f4011670&partnerID=40&md5=f520027091185e452164a349fcc710d1
Description
Summary:An effective recovery technology will be valuable in the future because the concentration of the precious metal contained in the source can be a key driver in recycling technology. This study aims to use response surface methodology (RSM) through Minitab software to discover the optimum oxygen level (mgL-1), e-waste pulp density (% w/v), and glycine concentration (mgL-1) for the maximum recovery of gold (Au) and silver (Ag). The method of precious metals recovery used for this study was taken from the bioleaching using 2 L of batch stirred tank reactor (BSTR). A Box-Behnken of RSM experimental statistical designs was used to optimize the experimental procedure. The result of the RSM optimization showed that the highest recovery was achieved at an oxygen concentration of 0.56 mgL-1, a pulp density of 1.95%, and a glycine concentration of 2.49 mgL-1, which resulted in the recovery of 62.40% of Au. The pulp density and glycine concentration greatly impact how much Au is bioleached by C. violaceum. As a result, not all of the variables analyzed seem crucial for getting the best precious metals recovery, and some adjustments may be useful in the future. © 2023 Wan Nur Fazlina Abdol Jani et al.
ISSN:15653633
DOI:10.1155/2023/4011670