MoS2-TiO2 coated PVDF-based hollow fiber membranes for permeate flux enhancement in membrane distillation
In this work, the surface of a PVDF-based hollow fiber membrane was modified by coating MoS2-TiO2 to improve the performance of membrane distillation (MD). The MoS2-TiO2 was first synthesized at different ratios using a one-step hydrothermal process. Then, the PVDF-based hollow fiber membrane was sp...
Published in: | Journal of Environmental Chemical Engineering |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Elsevier Ltd
2023
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85152115407&doi=10.1016%2fj.jece.2023.109866&partnerID=40&md5=852223456d301ac779c2383ba80a97e8 |
id |
2-s2.0-85152115407 |
---|---|
spelling |
2-s2.0-85152115407 Fuzil N.S.; Othman N.H.; Alias N.H.; Marpani F.; Mat Shayuti M.S.; Shahruddin M.Z.; Mohd Razlan M.R.; Abd Rahman N.; Lau W.J.; Othman M.H.D.; Ismail A.F.; Kusworo T.D.; Ul-Hamid A. MoS2-TiO2 coated PVDF-based hollow fiber membranes for permeate flux enhancement in membrane distillation 2023 Journal of Environmental Chemical Engineering 11 3 10.1016/j.jece.2023.109866 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85152115407&doi=10.1016%2fj.jece.2023.109866&partnerID=40&md5=852223456d301ac779c2383ba80a97e8 In this work, the surface of a PVDF-based hollow fiber membrane was modified by coating MoS2-TiO2 to improve the performance of membrane distillation (MD). The MoS2-TiO2 was first synthesized at different ratios using a one-step hydrothermal process. Then, the PVDF-based hollow fiber membrane was spun at various air gaps and PES was also added as an additive. As 5M5T (50 wt% MoS2 and 50 wt% TiO2) possessed better physicochemical properties and narrow band gap, the 5M5T was mixed with trichloro(octadecyl)silane in (OTS) at various loading to form a dip-coating solution. The PP20 membrane (PVDF + PES) spun at a 20 cm air gap was used as a support for MD due to its high porosity and low membrane thickness. It was observed that the contact angle of the MoS2-TiO2/PP20 membrane increased significantly to 136.8 ± 2.33° when the membrane was coated with 0.2% of 5M5T MoS2-TiO2. The MD performances were investigated via an in-house MD system. The results revealed that the performances of MoS2-TiO2/PP20 membranes were much higher than previously reported membranes due to their enhanced hydrophobicity and porosity properties. It was observed that a higher operating temperature could elevate the permeate flux up to 23.3 kg·m−2·h−1, but less than 0.1% changes in the rejection rate. The results obtained in this work suggest that the MoS2-TiO2 coated on the PVDF-based membrane can overcomes the typical permeability/rejection rate trade-off effect, which can play a significant role in enhancing MD performances. © 2023 Elsevier Ltd Elsevier Ltd 22133437 English Article |
author |
Fuzil N.S.; Othman N.H.; Alias N.H.; Marpani F.; Mat Shayuti M.S.; Shahruddin M.Z.; Mohd Razlan M.R.; Abd Rahman N.; Lau W.J.; Othman M.H.D.; Ismail A.F.; Kusworo T.D.; Ul-Hamid A. |
spellingShingle |
Fuzil N.S.; Othman N.H.; Alias N.H.; Marpani F.; Mat Shayuti M.S.; Shahruddin M.Z.; Mohd Razlan M.R.; Abd Rahman N.; Lau W.J.; Othman M.H.D.; Ismail A.F.; Kusworo T.D.; Ul-Hamid A. MoS2-TiO2 coated PVDF-based hollow fiber membranes for permeate flux enhancement in membrane distillation |
author_facet |
Fuzil N.S.; Othman N.H.; Alias N.H.; Marpani F.; Mat Shayuti M.S.; Shahruddin M.Z.; Mohd Razlan M.R.; Abd Rahman N.; Lau W.J.; Othman M.H.D.; Ismail A.F.; Kusworo T.D.; Ul-Hamid A. |
author_sort |
Fuzil N.S.; Othman N.H.; Alias N.H.; Marpani F.; Mat Shayuti M.S.; Shahruddin M.Z.; Mohd Razlan M.R.; Abd Rahman N.; Lau W.J.; Othman M.H.D.; Ismail A.F.; Kusworo T.D.; Ul-Hamid A. |
title |
MoS2-TiO2 coated PVDF-based hollow fiber membranes for permeate flux enhancement in membrane distillation |
title_short |
MoS2-TiO2 coated PVDF-based hollow fiber membranes for permeate flux enhancement in membrane distillation |
title_full |
MoS2-TiO2 coated PVDF-based hollow fiber membranes for permeate flux enhancement in membrane distillation |
title_fullStr |
MoS2-TiO2 coated PVDF-based hollow fiber membranes for permeate flux enhancement in membrane distillation |
title_full_unstemmed |
MoS2-TiO2 coated PVDF-based hollow fiber membranes for permeate flux enhancement in membrane distillation |
title_sort |
MoS2-TiO2 coated PVDF-based hollow fiber membranes for permeate flux enhancement in membrane distillation |
publishDate |
2023 |
container_title |
Journal of Environmental Chemical Engineering |
container_volume |
11 |
container_issue |
3 |
doi_str_mv |
10.1016/j.jece.2023.109866 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85152115407&doi=10.1016%2fj.jece.2023.109866&partnerID=40&md5=852223456d301ac779c2383ba80a97e8 |
description |
In this work, the surface of a PVDF-based hollow fiber membrane was modified by coating MoS2-TiO2 to improve the performance of membrane distillation (MD). The MoS2-TiO2 was first synthesized at different ratios using a one-step hydrothermal process. Then, the PVDF-based hollow fiber membrane was spun at various air gaps and PES was also added as an additive. As 5M5T (50 wt% MoS2 and 50 wt% TiO2) possessed better physicochemical properties and narrow band gap, the 5M5T was mixed with trichloro(octadecyl)silane in (OTS) at various loading to form a dip-coating solution. The PP20 membrane (PVDF + PES) spun at a 20 cm air gap was used as a support for MD due to its high porosity and low membrane thickness. It was observed that the contact angle of the MoS2-TiO2/PP20 membrane increased significantly to 136.8 ± 2.33° when the membrane was coated with 0.2% of 5M5T MoS2-TiO2. The MD performances were investigated via an in-house MD system. The results revealed that the performances of MoS2-TiO2/PP20 membranes were much higher than previously reported membranes due to their enhanced hydrophobicity and porosity properties. It was observed that a higher operating temperature could elevate the permeate flux up to 23.3 kg·m−2·h−1, but less than 0.1% changes in the rejection rate. The results obtained in this work suggest that the MoS2-TiO2 coated on the PVDF-based membrane can overcomes the typical permeability/rejection rate trade-off effect, which can play a significant role in enhancing MD performances. © 2023 Elsevier Ltd |
publisher |
Elsevier Ltd |
issn |
22133437 |
language |
English |
format |
Article |
accesstype |
|
record_format |
scopus |
collection |
Scopus |
_version_ |
1809677682114297856 |