Eco friendly synthesis of epoxidized palm oleic acid in acidic ion exchange resin

Global raw material use has moved from a non-renewable to a renewable resource. Additionally, the research on epoxidation has produced a safer, more cost-effective, and ecologically friendly product than non-renewable resources. At present, there are limited studies on the production of epoxidized p...

Full description

Bibliographic Details
Published in:International Journal of Chemical Reactor Engineering
Main Author: Rahman M.A.; Azmi I.S.; Ab Kadir M.Z.; Mohamed N.; Jalil M.J.
Format: Article
Language:English
Published: Walter de Gruyter GmbH 2023
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85150516494&doi=10.1515%2fijcre-2023-0017&partnerID=40&md5=47cbba069fd3c6004cef9712063a6cfd
Description
Summary:Global raw material use has moved from a non-renewable to a renewable resource. Additionally, the research on epoxidation has produced a safer, more cost-effective, and ecologically friendly product than non-renewable resources. At present, there are limited studies on the production of epoxidized palm oleic acid using eco-friendly ion exchange resin method. Consequently, the objective of this study is to optimise the reaction conditions of epoxidation palm oleic acid using ion exchange resin (amberlite IR 120H) as a catalyst. Epoxidized palm oleic acid was prepared using performic acid formed in situ by mixing formic acid with hydrogen peroxide. The results showed that the optimum reaction conditions for the production of oxirane content were a temperature of 75 °C and a hydrogen peroxide concentration of 30%. The maximum relative conversion of palm oleic acid to oxirane was achieved using the optimum conditions with up to 75%. Finally, a mathematical model was developed using MATLAB and the fourth-order Runge-Kutta method was integrated with the genetic algorithm to determine the reaction rate, which was consistent with the experimental data. This study proved that palm oleic acid was successfully converted into a green epoxide that promotes the use of palm oil as a raw material. © 2023 Walter de Gruyter GmbH, Berlin/Boston.
ISSN:21945748
DOI:10.1515/ijcre-2023-0017