Validation of the general Framingham Risk Score (FRS), SCORE2, revised PCE and WHO CVD risk scores in an Asian population

Background: Cardiovascular risk prediction models incorporate myriad CVD risk factors. Current prediction models are developed from non-Asian populations, and their utility in other parts of the world is unknown. We validated and compared the performance of CVD risk prediction models in an Asian pop...

Full description

Bibliographic Details
Published in:The Lancet Regional Health - Western Pacific
Main Author: Kasim S.S.; Ibrahim N.; Malek S.; Ibrahim K.S.; Aziz M.F.; Song C.; Chia Y.C.; Ramli A.S.; Negishi K.; Mat Nasir N.
Format: Article
Language:English
Published: Elsevier Ltd 2023
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85150274834&doi=10.1016%2fj.lanwpc.2023.100742&partnerID=40&md5=5059b9858245cae9f293221a0b00da25
Description
Summary:Background: Cardiovascular risk prediction models incorporate myriad CVD risk factors. Current prediction models are developed from non-Asian populations, and their utility in other parts of the world is unknown. We validated and compared the performance of CVD risk prediction models in an Asian population. Methods: Four validation groups were extracted from a longitudinal community-based study dataset of 12,573 participants aged ≥18 years to validate the Framingham Risk Score (FRS), Systematic COronary Risk Evaluation 2 (SCORE2), Revised Pooled Cohort Equations (RPCE), and World Health Organization cardiovascular disease (WHO CVD) models. Two measures of validation are examined: discrimination and calibration. Outcome of interest was 10-year risk of CVD events (fatal and non-fatal). SCORE2 and RPCE performances were compared to SCORE and PCE, respectively. Findings: FRS (AUC = 0.750) and RPCE (AUC = 0.752) showed good discrimination in CVD risk prediction. Although FRS and RPCE have poor calibration, FRS demonstrates smaller discordance for FRS vs. RPCE (298% vs. 733% in men, 146% vs. 391% in women). Other models had reasonable discrimination (AUC = 0.706–0.732). Only SCORE2-Low, -Moderate and -High (aged <50) had good calibration (X2 goodness-of-fit, P-value = 0.514, 0.189, 0.129, respectively). SCORE2 and RPCE showed improvements compared to SCORE (AUC = 0.755 vs. 0.747, P-value <0.001) and PCE (AUC = 0.752 vs. 0.546, P-value <0.001), respectively. Almost all risk models overestimated 10-year CVD risk by 3%–1430%. Interpretation: In Malaysians, RPCE are evaluated be the most clinically useful to predict CVD risk. Additionally, SCORE2 and RPCE outperformed SCORE and PCE, respectively. Funding: This work was supported by the Malaysian Ministry of Science, Technology, and Innovation (MOSTI) (Grant No: TDF03211036). © 2023 The Author(s)
ISSN:26666065
DOI:10.1016/j.lanwpc.2023.100742