The removal of antibiotics in water by chemically modified carbonaceous adsorbents from biomass: A systematic review
Antibiotics are extensively used in treating infectious diseases for both humans and animals. However, they are generally not fully digested in the body and are released as active compounds into aquatic systems through domestic sewage treatment plants, where they can cause chronic toxicity and some...
Published in: | Journal of Cleaner Production |
---|---|
Main Author: | |
Format: | Review |
Language: | English |
Published: |
Elsevier Ltd
2023
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85150068060&doi=10.1016%2fj.jclepro.2023.136725&partnerID=40&md5=0ab1875a9b97c7732f407bbb054aebf7 |
id |
2-s2.0-85150068060 |
---|---|
spelling |
2-s2.0-85150068060 Anuar N.F.; Iskandar Shah D.R.S.; Ramli F.F.; Md Zaini M.S.; Mohammadi N.A.; Mohamad Daud A.R.; Syed-Hassan S.S.A. The removal of antibiotics in water by chemically modified carbonaceous adsorbents from biomass: A systematic review 2023 Journal of Cleaner Production 401 10.1016/j.jclepro.2023.136725 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85150068060&doi=10.1016%2fj.jclepro.2023.136725&partnerID=40&md5=0ab1875a9b97c7732f407bbb054aebf7 Antibiotics are extensively used in treating infectious diseases for both humans and animals. However, they are generally not fully digested in the body and are released as active compounds into aquatic systems through domestic sewage treatment plants, where they can cause chronic toxicity and some potentially major health and environmental risks. Many researchers reported that conventional wastewater treatment processes cannot completely eradicate antibiotic residue and that these residues may be discharged to the receiving rivers and streams. Adsorption was claimed to be able to remove these contaminants even at low concentrations and under a variety of pH conditions. Biomass-based adsorbent materials have recently been used to remove antibiotics due to their wide availability, eco-friendly nature, good surface characteristics, and low cost. This study conducted a systematic review of biomass-based carbon adsorbents used for antibiotic removal. The surface chemistry and maximum antibiotic adsorption capacities were reviewed and discussed based on the type of biomass and chemical modification. The effect of influential variables such as pH, initial concentration of antibiotics and adsorbent dosage was also discussed in detail. After the screening process, four articles were found to be suitable for the detail analysis on reusable efficiency. Results of the detail analysis shows coconut shell and sawdust based-carbon adsorbent could remove antibiotics with 89% reusable efficiency after the fourth cycle of reuse. Overall, this systematic review ascribes the research work for synthesizing an excellent performance of biomass-based carbon adsorbent. © 2023 Elsevier Ltd Elsevier Ltd 09596526 English Review |
author |
Anuar N.F.; Iskandar Shah D.R.S.; Ramli F.F.; Md Zaini M.S.; Mohammadi N.A.; Mohamad Daud A.R.; Syed-Hassan S.S.A. |
spellingShingle |
Anuar N.F.; Iskandar Shah D.R.S.; Ramli F.F.; Md Zaini M.S.; Mohammadi N.A.; Mohamad Daud A.R.; Syed-Hassan S.S.A. The removal of antibiotics in water by chemically modified carbonaceous adsorbents from biomass: A systematic review |
author_facet |
Anuar N.F.; Iskandar Shah D.R.S.; Ramli F.F.; Md Zaini M.S.; Mohammadi N.A.; Mohamad Daud A.R.; Syed-Hassan S.S.A. |
author_sort |
Anuar N.F.; Iskandar Shah D.R.S.; Ramli F.F.; Md Zaini M.S.; Mohammadi N.A.; Mohamad Daud A.R.; Syed-Hassan S.S.A. |
title |
The removal of antibiotics in water by chemically modified carbonaceous adsorbents from biomass: A systematic review |
title_short |
The removal of antibiotics in water by chemically modified carbonaceous adsorbents from biomass: A systematic review |
title_full |
The removal of antibiotics in water by chemically modified carbonaceous adsorbents from biomass: A systematic review |
title_fullStr |
The removal of antibiotics in water by chemically modified carbonaceous adsorbents from biomass: A systematic review |
title_full_unstemmed |
The removal of antibiotics in water by chemically modified carbonaceous adsorbents from biomass: A systematic review |
title_sort |
The removal of antibiotics in water by chemically modified carbonaceous adsorbents from biomass: A systematic review |
publishDate |
2023 |
container_title |
Journal of Cleaner Production |
container_volume |
401 |
container_issue |
|
doi_str_mv |
10.1016/j.jclepro.2023.136725 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85150068060&doi=10.1016%2fj.jclepro.2023.136725&partnerID=40&md5=0ab1875a9b97c7732f407bbb054aebf7 |
description |
Antibiotics are extensively used in treating infectious diseases for both humans and animals. However, they are generally not fully digested in the body and are released as active compounds into aquatic systems through domestic sewage treatment plants, where they can cause chronic toxicity and some potentially major health and environmental risks. Many researchers reported that conventional wastewater treatment processes cannot completely eradicate antibiotic residue and that these residues may be discharged to the receiving rivers and streams. Adsorption was claimed to be able to remove these contaminants even at low concentrations and under a variety of pH conditions. Biomass-based adsorbent materials have recently been used to remove antibiotics due to their wide availability, eco-friendly nature, good surface characteristics, and low cost. This study conducted a systematic review of biomass-based carbon adsorbents used for antibiotic removal. The surface chemistry and maximum antibiotic adsorption capacities were reviewed and discussed based on the type of biomass and chemical modification. The effect of influential variables such as pH, initial concentration of antibiotics and adsorbent dosage was also discussed in detail. After the screening process, four articles were found to be suitable for the detail analysis on reusable efficiency. Results of the detail analysis shows coconut shell and sawdust based-carbon adsorbent could remove antibiotics with 89% reusable efficiency after the fourth cycle of reuse. Overall, this systematic review ascribes the research work for synthesizing an excellent performance of biomass-based carbon adsorbent. © 2023 Elsevier Ltd |
publisher |
Elsevier Ltd |
issn |
09596526 |
language |
English |
format |
Review |
accesstype |
|
record_format |
scopus |
collection |
Scopus |
_version_ |
1814778503405502464 |