Achieving type-II SnSSe/as van der waals heterostructure with satisfactory oxygen tolerance for optoelectronic and photovoltaic applications
Construction of van der Waals heterostructure provides a straightforward way to blend properties of different monolayer materials for enhanced photovoltaic performance. Herein, motivated by the successful characterization of monolayer SnX2 (X = S, Se) and arsenene (As), detailed interfacial intera...
Published in: | Journal of Solid State Chemistry |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Academic Press Inc.
2023
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149890972&doi=10.1016%2fj.jssc.2023.123925&partnerID=40&md5=2d6cfea59ed1c2237b99ffb1e4e0bdc0 |
id |
2-s2.0-85149890972 |
---|---|
spelling |
2-s2.0-85149890972 Robin Chang Y.H.; Jiang J.; Yeoh K.H.; Abdullahi Y.Z.; Khong H.Y.; Tuh M.H.; Liew F.K.; Liew Y.L. Achieving type-II SnSSe/as van der waals heterostructure with satisfactory oxygen tolerance for optoelectronic and photovoltaic applications 2023 Journal of Solid State Chemistry 321 10.1016/j.jssc.2023.123925 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149890972&doi=10.1016%2fj.jssc.2023.123925&partnerID=40&md5=2d6cfea59ed1c2237b99ffb1e4e0bdc0 Construction of van der Waals heterostructure provides a straightforward way to blend properties of different monolayer materials for enhanced photovoltaic performance. Herein, motivated by the successful characterization of monolayer SnX2 (X = S, Se) and arsenene (As), detailed interfacial interaction and optical absorption proficiencies of novel SnSSe/As heterostructure have been systematically investigated. Findings reveal that the SnSSe/As heterostructure exhibits a type-II band arrangement with an indirect bandgap of 1.30 eV that approaches the desirable Shockley-Queisser Limit under 2% biaxial tensile strain, strong absorption of 104-105 cm−1 toward solar irradiation that encompasses the infrared-ultraviolet region and high carrier mobility up to 910.71 cm2 V−1 s−1. Large, negative binding energy and absence of chemical bonds at the heterostructure interface imply its stability. The dynamical and mechanical stabilities have also been confirmed. Moreover, analysis of oxygen adsorption suggests tolerable performance deterioration with SnSSe side facing the ambient air. Hence, a photovoltaic with power conversion efficiency (PCE) exceeding 30% is ultimately proposed. © 2023 Elsevier Inc. Academic Press Inc. 224596 English Article All Open Access; Green Open Access |
author |
Robin Chang Y.H.; Jiang J.; Yeoh K.H.; Abdullahi Y.Z.; Khong H.Y.; Tuh M.H.; Liew F.K.; Liew Y.L. |
spellingShingle |
Robin Chang Y.H.; Jiang J.; Yeoh K.H.; Abdullahi Y.Z.; Khong H.Y.; Tuh M.H.; Liew F.K.; Liew Y.L. Achieving type-II SnSSe/as van der waals heterostructure with satisfactory oxygen tolerance for optoelectronic and photovoltaic applications |
author_facet |
Robin Chang Y.H.; Jiang J.; Yeoh K.H.; Abdullahi Y.Z.; Khong H.Y.; Tuh M.H.; Liew F.K.; Liew Y.L. |
author_sort |
Robin Chang Y.H.; Jiang J.; Yeoh K.H.; Abdullahi Y.Z.; Khong H.Y.; Tuh M.H.; Liew F.K.; Liew Y.L. |
title |
Achieving type-II SnSSe/as van der waals heterostructure with satisfactory oxygen tolerance for optoelectronic and photovoltaic applications |
title_short |
Achieving type-II SnSSe/as van der waals heterostructure with satisfactory oxygen tolerance for optoelectronic and photovoltaic applications |
title_full |
Achieving type-II SnSSe/as van der waals heterostructure with satisfactory oxygen tolerance for optoelectronic and photovoltaic applications |
title_fullStr |
Achieving type-II SnSSe/as van der waals heterostructure with satisfactory oxygen tolerance for optoelectronic and photovoltaic applications |
title_full_unstemmed |
Achieving type-II SnSSe/as van der waals heterostructure with satisfactory oxygen tolerance for optoelectronic and photovoltaic applications |
title_sort |
Achieving type-II SnSSe/as van der waals heterostructure with satisfactory oxygen tolerance for optoelectronic and photovoltaic applications |
publishDate |
2023 |
container_title |
Journal of Solid State Chemistry |
container_volume |
321 |
container_issue |
|
doi_str_mv |
10.1016/j.jssc.2023.123925 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149890972&doi=10.1016%2fj.jssc.2023.123925&partnerID=40&md5=2d6cfea59ed1c2237b99ffb1e4e0bdc0 |
description |
Construction of van der Waals heterostructure provides a straightforward way to blend properties of different monolayer materials for enhanced photovoltaic performance. Herein, motivated by the successful characterization of monolayer SnX2 (X = S, Se) and arsenene (As), detailed interfacial interaction and optical absorption proficiencies of novel SnSSe/As heterostructure have been systematically investigated. Findings reveal that the SnSSe/As heterostructure exhibits a type-II band arrangement with an indirect bandgap of 1.30 eV that approaches the desirable Shockley-Queisser Limit under 2% biaxial tensile strain, strong absorption of 104-105 cm−1 toward solar irradiation that encompasses the infrared-ultraviolet region and high carrier mobility up to 910.71 cm2 V−1 s−1. Large, negative binding energy and absence of chemical bonds at the heterostructure interface imply its stability. The dynamical and mechanical stabilities have also been confirmed. Moreover, analysis of oxygen adsorption suggests tolerable performance deterioration with SnSSe side facing the ambient air. Hence, a photovoltaic with power conversion efficiency (PCE) exceeding 30% is ultimately proposed. © 2023 Elsevier Inc. |
publisher |
Academic Press Inc. |
issn |
224596 |
language |
English |
format |
Article |
accesstype |
All Open Access; Green Open Access |
record_format |
scopus |
collection |
Scopus |
_version_ |
1809678156529926144 |