Influence of water based binary composite nanofluids on thermal performance of solar thermal technologies: sustainability assessments
Recent technological advances have made it possible to produce particles with nanometer dimensions that are uniformly and steadily suspended in traditional solar liquids and have enhanced the impact of thermo-physical parameters. In this research, a three-dimensional flat plate solar collector was b...
Published in: | Engineering Applications of Computational Fluid Mechanics |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Taylor and Francis Ltd.
2023
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148615062&doi=10.1080%2f19942060.2022.2159881&partnerID=40&md5=1ea8c7837a0d11fecc71cb5c2002a955 |
id |
2-s2.0-85148615062 |
---|---|
spelling |
2-s2.0-85148615062 Tao H.; Alawi O.A.; Hussein O.A.; Ahmed W.; Eltaweel M.; Homod R.Z.; Abdelrazek A.H.; Falah M.W.; Al-Ansari N.; Yaseen Z.M. Influence of water based binary composite nanofluids on thermal performance of solar thermal technologies: sustainability assessments 2023 Engineering Applications of Computational Fluid Mechanics 17 1 10.1080/19942060.2022.2159881 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148615062&doi=10.1080%2f19942060.2022.2159881&partnerID=40&md5=1ea8c7837a0d11fecc71cb5c2002a955 Recent technological advances have made it possible to produce particles with nanometer dimensions that are uniformly and steadily suspended in traditional solar liquids and have enhanced the impact of thermo-physical parameters. In this research, a three-dimensional flat plate solar collector was built using a thin flat plate and a single working fluid pipe. The physical model was solved computationally under conditions of conjugated laminar forced convection in the range 500 ≤ Re ≤ 1900 and a heat flux of 1000 W/m2. Distilled water (DW) and different types of hybrid nanofluids (namely, 0.1%-Al2O3@Cu/DW, 0.1%-MWCNTs@Fe3O4/DW, 0.3%-MWCNTs@Fe3O4/DW, 0.5%-Ag@MgO/DW, 1%-Ag@MgO/DW, 1%-S1 and 1%-S2, where MWCNTs are multi-wall carbon nanotubes, S1 means 2CuO–1Cu and S2 means 1CuO–2Cu nanocomposites) were evaluated via a set of parameters. The numerical results revealed that, by increasing the working fluid velocity (the Reynolds number), the average heat transfer coefficient, pressure loss, heat gain and solar collector efficiency were increased. Meanwhile, outlet fluid temperature and flat plate surface temperature were decreased. At Re = 1900, 1%-S2 and 1%-S1 presented higher thermal performance enhancement by 44.28% and 36.72% relative to DW. Moreover, low thermal performance enhancement of 7.59% and 7.44% were reported by 0.1%-Al2O3@Cu/DW and 0.3%-MWCNTs@Fe3O4/DW, respectively. © 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. Taylor and Francis Ltd. 19942060 English Article All Open Access; Gold Open Access; Green Open Access |
author |
Tao H.; Alawi O.A.; Hussein O.A.; Ahmed W.; Eltaweel M.; Homod R.Z.; Abdelrazek A.H.; Falah M.W.; Al-Ansari N.; Yaseen Z.M. |
spellingShingle |
Tao H.; Alawi O.A.; Hussein O.A.; Ahmed W.; Eltaweel M.; Homod R.Z.; Abdelrazek A.H.; Falah M.W.; Al-Ansari N.; Yaseen Z.M. Influence of water based binary composite nanofluids on thermal performance of solar thermal technologies: sustainability assessments |
author_facet |
Tao H.; Alawi O.A.; Hussein O.A.; Ahmed W.; Eltaweel M.; Homod R.Z.; Abdelrazek A.H.; Falah M.W.; Al-Ansari N.; Yaseen Z.M. |
author_sort |
Tao H.; Alawi O.A.; Hussein O.A.; Ahmed W.; Eltaweel M.; Homod R.Z.; Abdelrazek A.H.; Falah M.W.; Al-Ansari N.; Yaseen Z.M. |
title |
Influence of water based binary composite nanofluids on thermal performance of solar thermal technologies: sustainability assessments |
title_short |
Influence of water based binary composite nanofluids on thermal performance of solar thermal technologies: sustainability assessments |
title_full |
Influence of water based binary composite nanofluids on thermal performance of solar thermal technologies: sustainability assessments |
title_fullStr |
Influence of water based binary composite nanofluids on thermal performance of solar thermal technologies: sustainability assessments |
title_full_unstemmed |
Influence of water based binary composite nanofluids on thermal performance of solar thermal technologies: sustainability assessments |
title_sort |
Influence of water based binary composite nanofluids on thermal performance of solar thermal technologies: sustainability assessments |
publishDate |
2023 |
container_title |
Engineering Applications of Computational Fluid Mechanics |
container_volume |
17 |
container_issue |
1 |
doi_str_mv |
10.1080/19942060.2022.2159881 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148615062&doi=10.1080%2f19942060.2022.2159881&partnerID=40&md5=1ea8c7837a0d11fecc71cb5c2002a955 |
description |
Recent technological advances have made it possible to produce particles with nanometer dimensions that are uniformly and steadily suspended in traditional solar liquids and have enhanced the impact of thermo-physical parameters. In this research, a three-dimensional flat plate solar collector was built using a thin flat plate and a single working fluid pipe. The physical model was solved computationally under conditions of conjugated laminar forced convection in the range 500 ≤ Re ≤ 1900 and a heat flux of 1000 W/m2. Distilled water (DW) and different types of hybrid nanofluids (namely, 0.1%-Al2O3@Cu/DW, 0.1%-MWCNTs@Fe3O4/DW, 0.3%-MWCNTs@Fe3O4/DW, 0.5%-Ag@MgO/DW, 1%-Ag@MgO/DW, 1%-S1 and 1%-S2, where MWCNTs are multi-wall carbon nanotubes, S1 means 2CuO–1Cu and S2 means 1CuO–2Cu nanocomposites) were evaluated via a set of parameters. The numerical results revealed that, by increasing the working fluid velocity (the Reynolds number), the average heat transfer coefficient, pressure loss, heat gain and solar collector efficiency were increased. Meanwhile, outlet fluid temperature and flat plate surface temperature were decreased. At Re = 1900, 1%-S2 and 1%-S1 presented higher thermal performance enhancement by 44.28% and 36.72% relative to DW. Moreover, low thermal performance enhancement of 7.59% and 7.44% were reported by 0.1%-Al2O3@Cu/DW and 0.3%-MWCNTs@Fe3O4/DW, respectively. © 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. |
publisher |
Taylor and Francis Ltd. |
issn |
19942060 |
language |
English |
format |
Article |
accesstype |
All Open Access; Gold Open Access; Green Open Access |
record_format |
scopus |
collection |
Scopus |
_version_ |
1820775452411691008 |