Preliminary Modelling of Solar Quiet Geomagnetic Field Average using Non-Linear Autoregressive with Exogeneous Input (NARX)

This paper discusses geomagnetic field attempt modelling using an Artificial Neural Network (ANN). The local horizontal component of geomagnetic field data was collected on April 2011 (equinox) during a solar quiet day at recent solar cycle inclination-24 using the Magnetic Data Acquisition System (...

Full description

Bibliographic Details
Published in:Journal of Mechanical Engineering
Main Author: Hashim M.H.; Jusoh M.H.; Burhanudin K.; Yassin I.M.; Hamid N.S.A.; Radzi Z.M.; Yoshikawa A.
Format: Article
Language:English
Published: UiTM Press 2022
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85147740277&partnerID=40&md5=ecd40773804bd82a31efc3f4af6d2f7d
id 2-s2.0-85147740277
spelling 2-s2.0-85147740277
Hashim M.H.; Jusoh M.H.; Burhanudin K.; Yassin I.M.; Hamid N.S.A.; Radzi Z.M.; Yoshikawa A.
Preliminary Modelling of Solar Quiet Geomagnetic Field Average using Non-Linear Autoregressive with Exogeneous Input (NARX)
2022
Journal of Mechanical Engineering
11
Special Issue 1

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85147740277&partnerID=40&md5=ecd40773804bd82a31efc3f4af6d2f7d
This paper discusses geomagnetic field attempt modelling using an Artificial Neural Network (ANN). The local horizontal component of geomagnetic field data was collected on April 2011 (equinox) during a solar quiet day at recent solar cycle inclination-24 using the Magnetic Data Acquisition System (MAGDAS) in Langkawi, Malaysia, in the low latitude region. The calculated average values (mean) of the H component geomagnetic field variation during Equinox 2011 characterised the dominant geomagnetic field during that particular solar cycle. The difference in amplitude of maximum and minimum values shows a regular diurnal variation of the geomagnetic field during Sq in the low latitude region. The output training utilised these calculated mean values during the modelling attempt. Meanwhile, the input training utilised proton density, solar wind plasma speed, plasma flow pressure, and Interplanetary Magnetic Field (IMF) space data using Non-Linear Auto Regressive Input (NARX). The best modelling outputs were 3, 2, and 3 for input delay (nu), output delay (ny), and hidden layer size (h), respectively. Residual test and model fit analysis show an unbiased and high overlap between predicted and actual geomagnetic field average values, suggesting the model can potentially anticipate the geomagnetic field average during solar quiet in November (month of Equinox) on solar cycle inclination. © 2022 College of Engineering, Universiti Teknologi MARA (UiTM), Malaysia
UiTM Press
18235514
English
Article

author Hashim M.H.; Jusoh M.H.; Burhanudin K.; Yassin I.M.; Hamid N.S.A.; Radzi Z.M.; Yoshikawa A.
spellingShingle Hashim M.H.; Jusoh M.H.; Burhanudin K.; Yassin I.M.; Hamid N.S.A.; Radzi Z.M.; Yoshikawa A.
Preliminary Modelling of Solar Quiet Geomagnetic Field Average using Non-Linear Autoregressive with Exogeneous Input (NARX)
author_facet Hashim M.H.; Jusoh M.H.; Burhanudin K.; Yassin I.M.; Hamid N.S.A.; Radzi Z.M.; Yoshikawa A.
author_sort Hashim M.H.; Jusoh M.H.; Burhanudin K.; Yassin I.M.; Hamid N.S.A.; Radzi Z.M.; Yoshikawa A.
title Preliminary Modelling of Solar Quiet Geomagnetic Field Average using Non-Linear Autoregressive with Exogeneous Input (NARX)
title_short Preliminary Modelling of Solar Quiet Geomagnetic Field Average using Non-Linear Autoregressive with Exogeneous Input (NARX)
title_full Preliminary Modelling of Solar Quiet Geomagnetic Field Average using Non-Linear Autoregressive with Exogeneous Input (NARX)
title_fullStr Preliminary Modelling of Solar Quiet Geomagnetic Field Average using Non-Linear Autoregressive with Exogeneous Input (NARX)
title_full_unstemmed Preliminary Modelling of Solar Quiet Geomagnetic Field Average using Non-Linear Autoregressive with Exogeneous Input (NARX)
title_sort Preliminary Modelling of Solar Quiet Geomagnetic Field Average using Non-Linear Autoregressive with Exogeneous Input (NARX)
publishDate 2022
container_title Journal of Mechanical Engineering
container_volume 11
container_issue Special Issue 1
doi_str_mv
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85147740277&partnerID=40&md5=ecd40773804bd82a31efc3f4af6d2f7d
description This paper discusses geomagnetic field attempt modelling using an Artificial Neural Network (ANN). The local horizontal component of geomagnetic field data was collected on April 2011 (equinox) during a solar quiet day at recent solar cycle inclination-24 using the Magnetic Data Acquisition System (MAGDAS) in Langkawi, Malaysia, in the low latitude region. The calculated average values (mean) of the H component geomagnetic field variation during Equinox 2011 characterised the dominant geomagnetic field during that particular solar cycle. The difference in amplitude of maximum and minimum values shows a regular diurnal variation of the geomagnetic field during Sq in the low latitude region. The output training utilised these calculated mean values during the modelling attempt. Meanwhile, the input training utilised proton density, solar wind plasma speed, plasma flow pressure, and Interplanetary Magnetic Field (IMF) space data using Non-Linear Auto Regressive Input (NARX). The best modelling outputs were 3, 2, and 3 for input delay (nu), output delay (ny), and hidden layer size (h), respectively. Residual test and model fit analysis show an unbiased and high overlap between predicted and actual geomagnetic field average values, suggesting the model can potentially anticipate the geomagnetic field average during solar quiet in November (month of Equinox) on solar cycle inclination. © 2022 College of Engineering, Universiti Teknologi MARA (UiTM), Malaysia
publisher UiTM Press
issn 18235514
language English
format Article
accesstype
record_format scopus
collection Scopus
_version_ 1809677892278288384