Flow and Heat Transfer Analysis on Reiner-Philippoff Fluid Flow over a Stretching Sheet in the Presence of First and Second Order Velocity Slip and Temperature Jump Effects

Most of the fluid used in industrial application (i.e. Oils and gas industry, food manufacturing, lubrication and biomedical) do not conform to the Newtonian postulate. In contrast to the Newtonian fluid, the viscosity of the fluid can change when under force to either more liquid or more solid and...

全面介紹

書目詳細資料
發表在:CFD Letters
Main Authors: Ariffin N.A.N., Waini I., Kasim A.R.M., Kamal M.H.A., Ilias M.R., Kechil S.A.
格式: Article
語言:English
出版: Penerbit Akademia Baru 2023
在線閱讀:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85146444848&doi=10.37934%2fcfdl.15.1.88102&partnerID=40&md5=bdd86e711689a5d74d4ec019d313ff3c
實物特徵
總結:Most of the fluid used in industrial application (i.e. Oils and gas industry, food manufacturing, lubrication and biomedical) do not conform to the Newtonian postulate. In contrast to the Newtonian fluid, the viscosity of the fluid can change when under force to either more liquid or more solid and dependent on shear rate history. This behaviour of fluids is commonly known as non-Newtonian fluid. The non-Newtonian fluid is so widespread in nature and technology resulting in very high interest of investigating among scientist. The Reiner-Philippoff fluid is one of the types of non-Newtonian fluid models that exhibiting the dilatant, pseudoplastic and Newtonian behaviors. Hence, this study is devoted to analyze the flow and heat transfer of Reiner-Philippoff fluid with the presence of first and second order velocity slip together with the temperature jump effects over a stretching sheet. Partial differential equations of continuity, momentum and energy equations were transformed into the similarity equations. The obtained equations were then solved via bvp4c function in MATLAB software. For the validation purpose, the present model and its numerical solution were compared with previous established solutions under limiting case where the present model is condensed to be identical with the reported model and turn to be in very strong agreement. The consequences of pertinent parameters on fluid’s characteristics are analyzed in details through the plotted graphic visuals and tabular form. © 2023, Penerbit Akademia Baru. All rights reserved.
ISSN:21801363
DOI:10.37934/cfdl.15.1.88102