Summary: | Purpose: The aim of the presented work was to develop an economical, transparent coating with dispersed TiO2 dispersion and inorganic polysiloxane resin for glass windows application and to study its effectiveness in filtering IR and UV radiations. Design/methodology/approach: Two oligomeric silanes were prepared in different molar ratios to produce inorganic polysiloxane resin. They were tested for their viscosity to reflect the completion of the reaction and form an amide linkage. FTIR was done to support the viscosity result by proving the presence of amide linkages. 10%, 20%, and 30% of compounded TiO2 were successfully dispersed in 0.3% sodium sulfosalicylate (dehydrated ethanol). Each TiO2 concentration was characterized for size distribution and polydispersity index (PDI). Additives solutions of 2-hydroxybenzophenone (HBP) and boron trifluoride (BF3) were also soluted in the same solvent. Glass substrates were coated with the formulations and tested for curing and hardness properties. Windows Energy Profiler (WEP) was used to study the UV, IR, and daylight transmission of the coated glasses. Findings: Each inorganic polysiloxane resin showed various viscosity values before reaching a constant state which designates complete formations of amide linkages. Polysiloxane resin with a viscosity value of 30.5 mPa/s was the most ideal to act as a binder. FTIR characterization proved the formation of amide linkages. The particle size distribution of TiO2 recorded the size of 87 nm after dispersion with correlating value of 1 PDI. The fastest drying time of 3 hours was recorded. The pencil hardness test quoted 6H pencil as the hardest pencil grade. WEP analysis of UV, IR, and daylight transmission gives satisfactory results of 0%, 7%, and 61%, respectively. Research limitations/implications: Laboratory analysis for viscosity tests often being held off. The test requires the samples to be transferred in a cylinder with an open-air spindle rotation. Samples react with the surrounding environment. Thus, polymerization takes place rapidly, resulting in hardened samples inside the cylinder. The different measure was taken by wrapping the testing area with aluminium foil. This research was conducted under equatorial climate. Practical implications: The obtained test results may contribute to the conclusion of transparent TiO2 nano-particles coating on glass substrates for windows application. This can reduce the electricity usage in buildings for artificial cooling to provide indoor thermal comfort. Smart coating formulations have a noticeable effect on filtering harmful solar radiation. Originality/value:Keywords: Transparent Thiscoatingstudyon glasspresentssubstrates,theTiO2economicaldispersion,andIR andundemandingUV shielding, Ultra-highways to developshearing dispersion. transparent smart coating formulation with superior performance against solar radiation. It is expected to have a bright potential in the architectural industry. © by International OCSCO World Press. All rights reserved. 2022.
|