Theoretical Aspects of XLPE-Based Blends and Nanocomposites

The structure–property relation is the key to all applications in macromolecular systems. Computational simulations are used for better understanding of such structure–property relations. This molecular modeling has now become an indispensable complementary tool for experimental scientific research....

Full description

Bibliographic Details
Published in:Materials Horizons: From Nature to Nanomaterials
Main Author: Thomas M.E.; Vidya R.; Thomas J.; Ahmad Z.
Format: Book chapter
Language:English
Published: Springer Nature 2021
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144975580&doi=10.1007%2f978-981-16-0486-7_11&partnerID=40&md5=bc3fe84edaf8ad620ceda5178bf93b40
Description
Summary:The structure–property relation is the key to all applications in macromolecular systems. Computational simulations are used for better understanding of such structure–property relations. This molecular modeling has now become an indispensable complementary tool for experimental scientific research. The XLPE/nanocomposites studies are mostly done by quantum theories due to the better understanding of electronic structure levels; however, some calculations are done using classical mechanics. But classical mechanics and quantum mechanics are insufficient for certain analysis, and these defects point out the possibility to explore the studies in multi-scale theories for this field. The theoretical section of this chapter provides all the detailed description of most common theoretical techniques for the better understanding of such studies in XLPE/nanocomposites and blends. Another section of this chapter provides a short survey of the general principles and selected applications of molecular modeling in XLPE/nanocomposites and blends. The selection of efficient nanofillers and polymers for blends are suggested, and discussion on the mechanisms for electrical treeing by means of molecular modeling is also included. © 2021, Springer Nature Singapore Pte Ltd.
ISSN:25245384
DOI:10.1007/978-981-16-0486-7_11