In Vitro Cytopathogenic Activities of Acanthamoeba T3 and T4 Genotypes on HeLa Cell Monolayer

Amoebic keratitis and encephalitis are mainly caused by free-living amoebae of the genus Acanthamoeba, which consists of both pathogenic and nonpathogenic species. The global distribution, amphizoic properties and the severity of the disease caused by Acanthamoeba species have inspired the scientifi...

Full description

Bibliographic Details
Published in:Pathogens
Main Author: Mohd Hussain R.H.; Abdul Ghani M.K.; Khan N.A.; Siddiqui R.; Aazmi S.; Halim H.; Anuar T.S.
Format: Article
Language:English
Published: MDPI 2022
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144645727&doi=10.3390%2fpathogens11121474&partnerID=40&md5=eb875dc15a8e8d289dc073bae249e3c6
id 2-s2.0-85144645727
spelling 2-s2.0-85144645727
Mohd Hussain R.H.; Abdul Ghani M.K.; Khan N.A.; Siddiqui R.; Aazmi S.; Halim H.; Anuar T.S.
In Vitro Cytopathogenic Activities of Acanthamoeba T3 and T4 Genotypes on HeLa Cell Monolayer
2022
Pathogens
11
12
10.3390/pathogens11121474
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144645727&doi=10.3390%2fpathogens11121474&partnerID=40&md5=eb875dc15a8e8d289dc073bae249e3c6
Amoebic keratitis and encephalitis are mainly caused by free-living amoebae of the genus Acanthamoeba, which consists of both pathogenic and nonpathogenic species. The global distribution, amphizoic properties and the severity of the disease caused by Acanthamoeba species have inspired the scientific community to put more effort into the isolation of Acanthamoeba, besides exploring the direct and indirect parameters that could signify a pathogenic potential. Therefore, this study was performed to characterize the pathogenic potential of Acanthamoeba isolated from contact lens paraphernalia and water sources in Malaysia. Various methodologies were utilized to analyze the thermotolerance and osmotolerance, the secretion level of proteases and the cytopathic effect of trophozoites on the cell monolayer. In addition, the in vitro cytopathogenicity of these isolates was assessed using the LDH-release assay. A total of 14 Acanthamoeba isolates were classified as thermo- and osmotolerant and had presence of serine proteases with a molecular weight of 45–230 kDa. Four T4 genotypes isolated from contact lens paraphernalia recorded the presence of serine-type proteases of 107 kDa and 133 kDa. In contrast, all T3 genotypes isolated from environmental samples showed the presence of a 56 kDa proteolytic enzyme. Remarkably, eight T4 and a single T3 genotype isolates demonstrated a high adhesion percentage of greater than 90%. Moreover, the use of the HeLa cell monolayer showed that four T4 isolates and one T3 isolate achieved a cytopathic effect in the range of 44.9–59.4%, indicating an intermediate-to-high cytotoxicity level. Apart from that, the LDH-release assay revealed that three T4 isolates (CL5, CL54 and CL149) and one T3 isolate (SKA5-SK35) measured an exceptional toxicity level of higher than 40% compared to other isolates. In short, the presence of Acanthamoeba T3 and T4 genotypes with significant pathogenic potential in this study reiterates the essential need to reassess the functionality of other genotypes that were previously classified as nonpathogenic isolates in past research. © 2022 by the authors.
MDPI
20760817
English
Article
All Open Access; Gold Open Access; Green Open Access
author Mohd Hussain R.H.; Abdul Ghani M.K.; Khan N.A.; Siddiqui R.; Aazmi S.; Halim H.; Anuar T.S.
spellingShingle Mohd Hussain R.H.; Abdul Ghani M.K.; Khan N.A.; Siddiqui R.; Aazmi S.; Halim H.; Anuar T.S.
In Vitro Cytopathogenic Activities of Acanthamoeba T3 and T4 Genotypes on HeLa Cell Monolayer
author_facet Mohd Hussain R.H.; Abdul Ghani M.K.; Khan N.A.; Siddiqui R.; Aazmi S.; Halim H.; Anuar T.S.
author_sort Mohd Hussain R.H.; Abdul Ghani M.K.; Khan N.A.; Siddiqui R.; Aazmi S.; Halim H.; Anuar T.S.
title In Vitro Cytopathogenic Activities of Acanthamoeba T3 and T4 Genotypes on HeLa Cell Monolayer
title_short In Vitro Cytopathogenic Activities of Acanthamoeba T3 and T4 Genotypes on HeLa Cell Monolayer
title_full In Vitro Cytopathogenic Activities of Acanthamoeba T3 and T4 Genotypes on HeLa Cell Monolayer
title_fullStr In Vitro Cytopathogenic Activities of Acanthamoeba T3 and T4 Genotypes on HeLa Cell Monolayer
title_full_unstemmed In Vitro Cytopathogenic Activities of Acanthamoeba T3 and T4 Genotypes on HeLa Cell Monolayer
title_sort In Vitro Cytopathogenic Activities of Acanthamoeba T3 and T4 Genotypes on HeLa Cell Monolayer
publishDate 2022
container_title Pathogens
container_volume 11
container_issue 12
doi_str_mv 10.3390/pathogens11121474
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144645727&doi=10.3390%2fpathogens11121474&partnerID=40&md5=eb875dc15a8e8d289dc073bae249e3c6
description Amoebic keratitis and encephalitis are mainly caused by free-living amoebae of the genus Acanthamoeba, which consists of both pathogenic and nonpathogenic species. The global distribution, amphizoic properties and the severity of the disease caused by Acanthamoeba species have inspired the scientific community to put more effort into the isolation of Acanthamoeba, besides exploring the direct and indirect parameters that could signify a pathogenic potential. Therefore, this study was performed to characterize the pathogenic potential of Acanthamoeba isolated from contact lens paraphernalia and water sources in Malaysia. Various methodologies were utilized to analyze the thermotolerance and osmotolerance, the secretion level of proteases and the cytopathic effect of trophozoites on the cell monolayer. In addition, the in vitro cytopathogenicity of these isolates was assessed using the LDH-release assay. A total of 14 Acanthamoeba isolates were classified as thermo- and osmotolerant and had presence of serine proteases with a molecular weight of 45–230 kDa. Four T4 genotypes isolated from contact lens paraphernalia recorded the presence of serine-type proteases of 107 kDa and 133 kDa. In contrast, all T3 genotypes isolated from environmental samples showed the presence of a 56 kDa proteolytic enzyme. Remarkably, eight T4 and a single T3 genotype isolates demonstrated a high adhesion percentage of greater than 90%. Moreover, the use of the HeLa cell monolayer showed that four T4 isolates and one T3 isolate achieved a cytopathic effect in the range of 44.9–59.4%, indicating an intermediate-to-high cytotoxicity level. Apart from that, the LDH-release assay revealed that three T4 isolates (CL5, CL54 and CL149) and one T3 isolate (SKA5-SK35) measured an exceptional toxicity level of higher than 40% compared to other isolates. In short, the presence of Acanthamoeba T3 and T4 genotypes with significant pathogenic potential in this study reiterates the essential need to reassess the functionality of other genotypes that were previously classified as nonpathogenic isolates in past research. © 2022 by the authors.
publisher MDPI
issn 20760817
language English
format Article
accesstype All Open Access; Gold Open Access; Green Open Access
record_format scopus
collection Scopus
_version_ 1820775453638524928