In-hospital mortality risk stratification of Asian ACS patients with artificial intelligence algorithm
Background Conventional risk score for predicting in-hospital mortality following Acute Coronary Syndrome (ACS) is not catered for Asian patients and requires different types of scoring algorithms for STEMI and NSTEMI patients. Objective To derive a single algorithm using deep learning and machine l...
Published in: | PLoS ONE |
---|---|
Main Author: | Kasim S.; Malek S.; Song C.; Ahmad W.A.W.; Fong A.; Ibrahim K.S.; Safiruz M.S.; Aziz F.; Hiew J.H.; Ibrahim N. |
Format: | Article |
Language: | English |
Published: |
Public Library of Science
2022
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144309456&doi=10.1371%2fjournal.pone.0278944&partnerID=40&md5=f0035362735952cfde3a7935fae60782 |
Similar Items
-
In-hospital risk stratification algorithm of Asian elderly patients
by: Kasim S.; Malek S.; Cheen S.; Safiruz M.S.; Ahmad W.A.W.; Ibrahim K.S.; Aziz F.; Negishi K.; Ibrahim N.
Published: (2022) -
Predicting 30-day mortality after an acute coronary syndrome (acs) using machine learning methods for feature selection, classification and visualisation
by: Aziida N.; Malek S.; Aziz F.; Ibrahim K.S.; Kasim S.
Published: (2021) -
Short- And long-term mortality prediction after an acute ST-elevation myocardial infarction (STEMI) in Asians: A machine learning approach
by: Aziz F.; Malek S.; Ibrahim K.S.; Shariff R.E.R.; Wan Ahmad W.A.; Ali R.M.; Liu K.T.; Selvaraj G.; Kasim S.
Published: (2021) -
An international, stepped wedge, cluster-randomized trial investigating the 0/1-h algorithm in suspected acute coronary syndrome in Asia: the rational of the DROP-Asian ACS study
by: Inoue K.; Chieh J.T.W.; Yeh L.C.; Chiang S.-J.; Phrommintikul A.; Suwanasom P.; Kasim S.; Ahmad B.; Idrose A.M.; Salleh F.M.; Oyamada S.; Hirano Y.; Ouchi S.; Terakura M.; Yokoyama N.; Kozuma K.; Nanasato M.; Higuchi R.; Yumoto K.; Fukuzawa T.; Shimada I.; Giannitsis E.; Twerenbold R.; Minamino T.
Published: (2022) -
Artificial Intelligence in Andrology: From Semen Analysis to Image Diagnostics
by: Ghayda R.A.; Cannarella R.; Calogero A.E.; Shah R.; Rambhatla A.; Zohdy W.; Kavoussi P.; Avidor-Reiss T.; Boitrelle F.; Mostafa T.; Saleh R.; Toprak T.; Birowo P.; Salvio G.; Calik G.; Kuroda S.; Kaiyal R.S.; Ziouziou I.; Crafa A.; Phuoc N.H.V.; Russo G.I.; Durairajanayagam D.; Al-Hashimi M.; Hamoda T.A.-A.A.-M.; Pinggera G.-M.; Adriansjah R.; Rosas I.M.; Arafa M.; Chung E.; Atmoko W.; Rocco L.; Lin H.; Huyghe E.; Kothari P.; Vazquez J.F.S.; Dimitriadis F.; Garrido N.; Homa S.; Falcone M.; Sabbaghian M.; Kandil H.; Ko E.; Martinez M.; Nguyen Q.; Harraz A.M.; Serefoglu E.C.; Karthikeyan V.S.; Ba Tien D.M.; Jindal S.; Micic S.; Bellavia M.; Alali H.; Gherabi N.; Lewis S.; Park H.J.; Simopoulou M.; Sallam H.; Ramirez L.; Colpi G.; Agarwal A.
Published: (2024)