Constructing trifunctional MoTe2/As van der Waals heterostructures for versatile energy applications

With the rapid development of materials applications, the limitation of a single layer material has become more apparent and its intrinsic properties can no longer satisfy the growing demand. The construction of van der Waals (vdW) heterostructures is an effective way to address this issue. Here, th...

Full description

Bibliographic Details
Published in:New Journal of Chemistry
Main Author: Chang Y.H.R.; Yeoh K.H.; Jiang J.; Lim T.L.; Yong Y.S.; Low L.C.; Tuh M.H.
Format: Article
Language:English
Published: Royal Society of Chemistry 2022
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141302252&doi=10.1039%2fd2nj04297e&partnerID=40&md5=14b0845238599b852e07457aec3d86d7
id 2-s2.0-85141302252
spelling 2-s2.0-85141302252
Chang Y.H.R.; Yeoh K.H.; Jiang J.; Lim T.L.; Yong Y.S.; Low L.C.; Tuh M.H.
Constructing trifunctional MoTe2/As van der Waals heterostructures for versatile energy applications
2022
New Journal of Chemistry
46
42
10.1039/d2nj04297e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141302252&doi=10.1039%2fd2nj04297e&partnerID=40&md5=14b0845238599b852e07457aec3d86d7
With the rapid development of materials applications, the limitation of a single layer material has become more apparent and its intrinsic properties can no longer satisfy the growing demand. The construction of van der Waals (vdW) heterostructures is an effective way to address this issue. Here, the heterostructure stability, excitation transfer mechanism, carrier mobility and multiple energy conversion performance of MoTe2/As stacking have been studied using first-principles calculations. Binding energy and AIMD simulation analyses show that the ductile, type-II indirect band gap MoTe2/As heterostructure acquires satisfactory thermal stability along with a small lattice mismatch of 1.5%, a high carrier mobility (up to 736.06 cm2 V−1 s−1), a high solar absorbance on the 105 cm−1 order across the infrared-ultraviolet region, a spectroscopic limited maximum efficiency (SLME) exceeding 30% and a large built-in electric field at the interface, rendering this heterostructure suitable for nanoscale optoelectronics applications. Under optimal hole doping, the calculated electronic transport parameters reveal a combined moderate figure of merit (ZT > 0.6) and an impressive power factor (PF > 48.0 mW m−1 K−2) at a temperature of above 700 K. More remarkably, the heterostructure has band edge positions straddling the water redox potential for pH scale of 0-4 under a 4% biaxial compressive strain, which leads to commercially compliant solar-to-hydrogen (STH) energy conversion efficiencies of 30%. These results provide a clear underlying description of the potential of a MoTe2/As heterojunction as a multifunctional energy material. © 2022 The Royal Society of Chemistry.
Royal Society of Chemistry
11440546
English
Article

author Chang Y.H.R.; Yeoh K.H.; Jiang J.; Lim T.L.; Yong Y.S.; Low L.C.; Tuh M.H.
spellingShingle Chang Y.H.R.; Yeoh K.H.; Jiang J.; Lim T.L.; Yong Y.S.; Low L.C.; Tuh M.H.
Constructing trifunctional MoTe2/As van der Waals heterostructures for versatile energy applications
author_facet Chang Y.H.R.; Yeoh K.H.; Jiang J.; Lim T.L.; Yong Y.S.; Low L.C.; Tuh M.H.
author_sort Chang Y.H.R.; Yeoh K.H.; Jiang J.; Lim T.L.; Yong Y.S.; Low L.C.; Tuh M.H.
title Constructing trifunctional MoTe2/As van der Waals heterostructures for versatile energy applications
title_short Constructing trifunctional MoTe2/As van der Waals heterostructures for versatile energy applications
title_full Constructing trifunctional MoTe2/As van der Waals heterostructures for versatile energy applications
title_fullStr Constructing trifunctional MoTe2/As van der Waals heterostructures for versatile energy applications
title_full_unstemmed Constructing trifunctional MoTe2/As van der Waals heterostructures for versatile energy applications
title_sort Constructing trifunctional MoTe2/As van der Waals heterostructures for versatile energy applications
publishDate 2022
container_title New Journal of Chemistry
container_volume 46
container_issue 42
doi_str_mv 10.1039/d2nj04297e
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141302252&doi=10.1039%2fd2nj04297e&partnerID=40&md5=14b0845238599b852e07457aec3d86d7
description With the rapid development of materials applications, the limitation of a single layer material has become more apparent and its intrinsic properties can no longer satisfy the growing demand. The construction of van der Waals (vdW) heterostructures is an effective way to address this issue. Here, the heterostructure stability, excitation transfer mechanism, carrier mobility and multiple energy conversion performance of MoTe2/As stacking have been studied using first-principles calculations. Binding energy and AIMD simulation analyses show that the ductile, type-II indirect band gap MoTe2/As heterostructure acquires satisfactory thermal stability along with a small lattice mismatch of 1.5%, a high carrier mobility (up to 736.06 cm2 V−1 s−1), a high solar absorbance on the 105 cm−1 order across the infrared-ultraviolet region, a spectroscopic limited maximum efficiency (SLME) exceeding 30% and a large built-in electric field at the interface, rendering this heterostructure suitable for nanoscale optoelectronics applications. Under optimal hole doping, the calculated electronic transport parameters reveal a combined moderate figure of merit (ZT > 0.6) and an impressive power factor (PF > 48.0 mW m−1 K−2) at a temperature of above 700 K. More remarkably, the heterostructure has band edge positions straddling the water redox potential for pH scale of 0-4 under a 4% biaxial compressive strain, which leads to commercially compliant solar-to-hydrogen (STH) energy conversion efficiencies of 30%. These results provide a clear underlying description of the potential of a MoTe2/As heterojunction as a multifunctional energy material. © 2022 The Royal Society of Chemistry.
publisher Royal Society of Chemistry
issn 11440546
language English
format Article
accesstype
record_format scopus
collection Scopus
_version_ 1809678024627453952