Constructing trifunctional MoTe2/As van der Waals heterostructures for versatile energy applications
With the rapid development of materials applications, the limitation of a single layer material has become more apparent and its intrinsic properties can no longer satisfy the growing demand. The construction of van der Waals (vdW) heterostructures is an effective way to address this issue. Here, th...
Published in: | New Journal of Chemistry |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Royal Society of Chemistry
2022
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141302252&doi=10.1039%2fd2nj04297e&partnerID=40&md5=14b0845238599b852e07457aec3d86d7 |
id |
2-s2.0-85141302252 |
---|---|
spelling |
2-s2.0-85141302252 Chang Y.H.R.; Yeoh K.H.; Jiang J.; Lim T.L.; Yong Y.S.; Low L.C.; Tuh M.H. Constructing trifunctional MoTe2/As van der Waals heterostructures for versatile energy applications 2022 New Journal of Chemistry 46 42 10.1039/d2nj04297e https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141302252&doi=10.1039%2fd2nj04297e&partnerID=40&md5=14b0845238599b852e07457aec3d86d7 With the rapid development of materials applications, the limitation of a single layer material has become more apparent and its intrinsic properties can no longer satisfy the growing demand. The construction of van der Waals (vdW) heterostructures is an effective way to address this issue. Here, the heterostructure stability, excitation transfer mechanism, carrier mobility and multiple energy conversion performance of MoTe2/As stacking have been studied using first-principles calculations. Binding energy and AIMD simulation analyses show that the ductile, type-II indirect band gap MoTe2/As heterostructure acquires satisfactory thermal stability along with a small lattice mismatch of 1.5%, a high carrier mobility (up to 736.06 cm2 V−1 s−1), a high solar absorbance on the 105 cm−1 order across the infrared-ultraviolet region, a spectroscopic limited maximum efficiency (SLME) exceeding 30% and a large built-in electric field at the interface, rendering this heterostructure suitable for nanoscale optoelectronics applications. Under optimal hole doping, the calculated electronic transport parameters reveal a combined moderate figure of merit (ZT > 0.6) and an impressive power factor (PF > 48.0 mW m−1 K−2) at a temperature of above 700 K. More remarkably, the heterostructure has band edge positions straddling the water redox potential for pH scale of 0-4 under a 4% biaxial compressive strain, which leads to commercially compliant solar-to-hydrogen (STH) energy conversion efficiencies of 30%. These results provide a clear underlying description of the potential of a MoTe2/As heterojunction as a multifunctional energy material. © 2022 The Royal Society of Chemistry. Royal Society of Chemistry 11440546 English Article |
author |
Chang Y.H.R.; Yeoh K.H.; Jiang J.; Lim T.L.; Yong Y.S.; Low L.C.; Tuh M.H. |
spellingShingle |
Chang Y.H.R.; Yeoh K.H.; Jiang J.; Lim T.L.; Yong Y.S.; Low L.C.; Tuh M.H. Constructing trifunctional MoTe2/As van der Waals heterostructures for versatile energy applications |
author_facet |
Chang Y.H.R.; Yeoh K.H.; Jiang J.; Lim T.L.; Yong Y.S.; Low L.C.; Tuh M.H. |
author_sort |
Chang Y.H.R.; Yeoh K.H.; Jiang J.; Lim T.L.; Yong Y.S.; Low L.C.; Tuh M.H. |
title |
Constructing trifunctional MoTe2/As van der Waals heterostructures for versatile energy applications |
title_short |
Constructing trifunctional MoTe2/As van der Waals heterostructures for versatile energy applications |
title_full |
Constructing trifunctional MoTe2/As van der Waals heterostructures for versatile energy applications |
title_fullStr |
Constructing trifunctional MoTe2/As van der Waals heterostructures for versatile energy applications |
title_full_unstemmed |
Constructing trifunctional MoTe2/As van der Waals heterostructures for versatile energy applications |
title_sort |
Constructing trifunctional MoTe2/As van der Waals heterostructures for versatile energy applications |
publishDate |
2022 |
container_title |
New Journal of Chemistry |
container_volume |
46 |
container_issue |
42 |
doi_str_mv |
10.1039/d2nj04297e |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141302252&doi=10.1039%2fd2nj04297e&partnerID=40&md5=14b0845238599b852e07457aec3d86d7 |
description |
With the rapid development of materials applications, the limitation of a single layer material has become more apparent and its intrinsic properties can no longer satisfy the growing demand. The construction of van der Waals (vdW) heterostructures is an effective way to address this issue. Here, the heterostructure stability, excitation transfer mechanism, carrier mobility and multiple energy conversion performance of MoTe2/As stacking have been studied using first-principles calculations. Binding energy and AIMD simulation analyses show that the ductile, type-II indirect band gap MoTe2/As heterostructure acquires satisfactory thermal stability along with a small lattice mismatch of 1.5%, a high carrier mobility (up to 736.06 cm2 V−1 s−1), a high solar absorbance on the 105 cm−1 order across the infrared-ultraviolet region, a spectroscopic limited maximum efficiency (SLME) exceeding 30% and a large built-in electric field at the interface, rendering this heterostructure suitable for nanoscale optoelectronics applications. Under optimal hole doping, the calculated electronic transport parameters reveal a combined moderate figure of merit (ZT > 0.6) and an impressive power factor (PF > 48.0 mW m−1 K−2) at a temperature of above 700 K. More remarkably, the heterostructure has band edge positions straddling the water redox potential for pH scale of 0-4 under a 4% biaxial compressive strain, which leads to commercially compliant solar-to-hydrogen (STH) energy conversion efficiencies of 30%. These results provide a clear underlying description of the potential of a MoTe2/As heterojunction as a multifunctional energy material. © 2022 The Royal Society of Chemistry. |
publisher |
Royal Society of Chemistry |
issn |
11440546 |
language |
English |
format |
Article |
accesstype |
|
record_format |
scopus |
collection |
Scopus |
_version_ |
1809678024627453952 |