Synergistic epoxidation of palm oleic acid using a hybrid oxygen carrier solution
The gradual depletion of fossil fuel reserves and the sharp rise in the cost of fossil fuels have generated a frenzy of activities in the quest to search for renewable source-based alternatives. Epoxides are an intermediate product that can be converted into value-added polymers. In the industry, ep...
Published in: | Biomass Conversion and Biorefinery |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Springer Science and Business Media Deutschland GmbH
2024
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85139462953&doi=10.1007%2fs13399-022-03325-z&partnerID=40&md5=2f3b116d574e959c906173fd3e200be2 |
id |
2-s2.0-85139462953 |
---|---|
spelling |
2-s2.0-85139462953 Azmi I.S.; Ozir T.A.Z.T.; Rasib I.M.; Nurherdiana S.D.; Jalil M.J. Synergistic epoxidation of palm oleic acid using a hybrid oxygen carrier solution 2024 Biomass Conversion and Biorefinery 14 12 10.1007/s13399-022-03325-z https://www.scopus.com/inward/record.uri?eid=2-s2.0-85139462953&doi=10.1007%2fs13399-022-03325-z&partnerID=40&md5=2f3b116d574e959c906173fd3e200be2 The gradual depletion of fossil fuel reserves and the sharp rise in the cost of fossil fuels have generated a frenzy of activities in the quest to search for renewable source-based alternatives. Epoxides are an intermediate product that can be converted into value-added polymers. In the industry, epoxidation of vegetable oils is most frequently carried out with performic and peracetic acids. The aim of this study is to investigate the influence of the type of oxygen carrier (formic acid, acetic acid, and hybrid solution of formic and acetic acid) on the epoxidation of palm oleic acid. The peracids were formed in situ in this study. Based on the results, the highest relative conversion to oxirane (RCO) is achieved using formic acid, with a value of 82% at a reaction time of 25 min. Interestingly, a high RCO (82%) can also be achieved by using a hybrid solution of formic and acetic acid at a molar ratio of 1:1. The use of a hybrid oxygen carrier solution can help minimize the use of formic acid, which would create a strong acidic environment. In addition, the kinetic model is capable of predicting the reaction kinetics of the epoxidation process since the simulation results show good agreement with the experimental data, particularly for a formic acid/acetic acid molar ratio of 0.5:1.0. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Springer Science and Business Media Deutschland GmbH 21906815 English Article |
author |
Azmi I.S.; Ozir T.A.Z.T.; Rasib I.M.; Nurherdiana S.D.; Jalil M.J. |
spellingShingle |
Azmi I.S.; Ozir T.A.Z.T.; Rasib I.M.; Nurherdiana S.D.; Jalil M.J. Synergistic epoxidation of palm oleic acid using a hybrid oxygen carrier solution |
author_facet |
Azmi I.S.; Ozir T.A.Z.T.; Rasib I.M.; Nurherdiana S.D.; Jalil M.J. |
author_sort |
Azmi I.S.; Ozir T.A.Z.T.; Rasib I.M.; Nurherdiana S.D.; Jalil M.J. |
title |
Synergistic epoxidation of palm oleic acid using a hybrid oxygen carrier solution |
title_short |
Synergistic epoxidation of palm oleic acid using a hybrid oxygen carrier solution |
title_full |
Synergistic epoxidation of palm oleic acid using a hybrid oxygen carrier solution |
title_fullStr |
Synergistic epoxidation of palm oleic acid using a hybrid oxygen carrier solution |
title_full_unstemmed |
Synergistic epoxidation of palm oleic acid using a hybrid oxygen carrier solution |
title_sort |
Synergistic epoxidation of palm oleic acid using a hybrid oxygen carrier solution |
publishDate |
2024 |
container_title |
Biomass Conversion and Biorefinery |
container_volume |
14 |
container_issue |
12 |
doi_str_mv |
10.1007/s13399-022-03325-z |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85139462953&doi=10.1007%2fs13399-022-03325-z&partnerID=40&md5=2f3b116d574e959c906173fd3e200be2 |
description |
The gradual depletion of fossil fuel reserves and the sharp rise in the cost of fossil fuels have generated a frenzy of activities in the quest to search for renewable source-based alternatives. Epoxides are an intermediate product that can be converted into value-added polymers. In the industry, epoxidation of vegetable oils is most frequently carried out with performic and peracetic acids. The aim of this study is to investigate the influence of the type of oxygen carrier (formic acid, acetic acid, and hybrid solution of formic and acetic acid) on the epoxidation of palm oleic acid. The peracids were formed in situ in this study. Based on the results, the highest relative conversion to oxirane (RCO) is achieved using formic acid, with a value of 82% at a reaction time of 25 min. Interestingly, a high RCO (82%) can also be achieved by using a hybrid solution of formic and acetic acid at a molar ratio of 1:1. The use of a hybrid oxygen carrier solution can help minimize the use of formic acid, which would create a strong acidic environment. In addition, the kinetic model is capable of predicting the reaction kinetics of the epoxidation process since the simulation results show good agreement with the experimental data, particularly for a formic acid/acetic acid molar ratio of 0.5:1.0. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
publisher |
Springer Science and Business Media Deutschland GmbH |
issn |
21906815 |
language |
English |
format |
Article |
accesstype |
|
record_format |
scopus |
collection |
Scopus |
_version_ |
1809678151736885248 |