Modeling and optimization of the adsorptive removal of crystal violet dye by durian (Durio zibethinus) seeds powder: insight into kinetic, isotherm, thermodynamic, and adsorption mechanism

In this study, a renewable and effective bio-adsorbent was derived from Malaysian durian seeds (DSs) to act as a promising biosorbent for phytoremediation application towards removal of a hazardous cationic dye (crystal violet, CV) from aqueous environments. The physiochemical characteristics of DS...

Full description

Bibliographic Details
Published in:Biomass Conversion and Biorefinery
Main Author: Jani N.A.; Haddad L.; Abdulhameed A.S.; Jawad A.H.; ALOthman Z.A.; Yaseen Z.M.
Format: Article
Language:English
Published: Springer Science and Business Media Deutschland GmbH 2024
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85138802313&doi=10.1007%2fs13399-022-03319-x&partnerID=40&md5=2e6fa47e109eba4863b107279a152774
Description
Summary:In this study, a renewable and effective bio-adsorbent was derived from Malaysian durian seeds (DSs) to act as a promising biosorbent for phytoremediation application towards removal of a hazardous cationic dye (crystal violet, CV) from aqueous environments. The physiochemical characteristics of DS were investigated by several analytical methods such as FTIR, TGA-DTG, BET, pHpzc, and SEM-EDX. Subsequently, a statistical optimization for CV removal by DS was carried out via Box-Behnken design (BBD) and numerical desirability function. In this regard, four operational factors that affect CV adsorption, i.e., DS dosage (0.02–0.1 g), initial pH (4–10), temperature (25–50 °C), and adsorption time (5–25 min) were optimized by BBD and numerical desirability function. Hence, the highest CV removal (93.91%) was recorded under the optimal conditions found through desirability function as follows: DS dosage of 0.081 g, solution pH = 9.9, working temperature = 34.6 °C, and contact time = 24.9 min. Furthermore, ANOVA test indicated the significant parametric interactions towards CV removal (%) can be observed between AB (DS dose vs. initial pH), AD (DS dose vs. time), and BC (initial pH vs. temperature) interactions. The adsorption kinetic process was well described by a pseudo-second-order model. Subsequently, the adsorption equilibrium isotherm was well presented by Freundlich and Temkin isotherm models with maximum adsorption capacity of 158 mg/g. Thus, the thermodynamic functions revealed that the adsorption process was spontaneous and endothermic in nature. The adsorption mechanism of CV on the DS surface can be ascribed to the electrostatic forces, n-π stacking, and H-bonding interactions. Thus, the output of the research work indicates the potential applicability of DS as a renewable and effective biosorbent for the removal of CV from aqueous environments. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ISSN:21906815
DOI:10.1007/s13399-022-03319-x