Intrapartum cardiotocography trace pattern pre-processing, features extraction and fetal health condition diagnoses based on RCOG guideline

Context: The computerization of both fetal heart rate (FHR) and intelligent classification modeling of the cardiotocograph (CTG) is one of the approaches that are utilized in assisting obstetricians in conducting initial interpretation based on (CTG) analysis. CTG tracing interpretation is crucial f...

Full description

Bibliographic Details
Published in:PeerJ Computer Science
Main Author: Al-yousif S.; Najm I.A.; Talab H.S.; Al Qahtani N.H.; Alfiras M.; Al-Rawi O.Y.M.; Al-Dayyeni W.S.; Alrawi A.A.A.; Mnati M.J.; Jarrar M.; Ghabban F.; Al-Shareefi N.A.; Jaber M.M.; Saleh A.H.; Tahir N.M.; Najim H.T.; Taher M.
Format: Article
Language:English
Published: PeerJ Inc. 2022
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85138094254&doi=10.7717%2fPEERJ-CS.1050&partnerID=40&md5=221a4ff50de4bc7ed13fa01ccf682e1b
id 2-s2.0-85138094254
spelling 2-s2.0-85138094254
Al-yousif S.; Najm I.A.; Talab H.S.; Al Qahtani N.H.; Alfiras M.; Al-Rawi O.Y.M.; Al-Dayyeni W.S.; Alrawi A.A.A.; Mnati M.J.; Jarrar M.; Ghabban F.; Al-Shareefi N.A.; Jaber M.M.; Saleh A.H.; Tahir N.M.; Najim H.T.; Taher M.
Intrapartum cardiotocography trace pattern pre-processing, features extraction and fetal health condition diagnoses based on RCOG guideline
2022
PeerJ Computer Science
8

10.7717/PEERJ-CS.1050
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85138094254&doi=10.7717%2fPEERJ-CS.1050&partnerID=40&md5=221a4ff50de4bc7ed13fa01ccf682e1b
Context: The computerization of both fetal heart rate (FHR) and intelligent classification modeling of the cardiotocograph (CTG) is one of the approaches that are utilized in assisting obstetricians in conducting initial interpretation based on (CTG) analysis. CTG tracing interpretation is crucial for the monitoring of the fetal status during weeks into the pregnancy and childbirth. Most contemporary studies rely on computer-assisted fetal heart rate (FHR) feature extraction and CTG categorization to determine the best precise diagnosis for tracking fetal health during pregnancy. Furthermore, through the utilization of a computer-assisted fetal monitoring system, the FHR patterns can be precisely detected and categorized. Objective: The goal of this project is to create a reliable feature extraction algorithm for the FHR as well as a systematic and viable classifier for the CTG through the utilization of the MATLAB platform, all the while adhering to the recognized Royal College of Obstetricians and Gynecologists (RCOG) recommendations. Method: The compiled CTG data from spiky artifacts were cleaned by a specifically created application and compensated for missing data using the guidelines provided by RCOG and the MATLAB toolbox after the implemented data has been processed and the FHR fundamental features have been extracted, for example, the baseline, acceleration, deceleration, and baseline variability. This is followed by the classification phase based on the MATLAB environment. Next, using the guideline provided by the RCOG, the signals patterns of CTG were classified into three categories specifically as normal, abnormal (suspicious), or pathological. Furthermore, to ensure the effectiveness of the created computerized procedure and confirm the robustness of the method, the visual interpretation performed by five obstetricians is compared with the results utilizing the computerized version for the 150 CTG signals. Results: The attained CTG signal categorization results revealed that there is variability, particularly a trivial dissimilarity of approximately (+/−4 and 6) beats per minute (b.p.m.). It was demonstrated that obstetricians’ observations coincide with algorithms based on deceleration type and number, except for acceleration values that differ by up to (+/−4). Discussion: The results obtained based on CTG interpretation showed that the utilization of the computerized approach employed in infirmaries and home care services for pregnant women is indeed suitable. Conclusions: The classification based on CTG that was used for the interpretation of the FHR attribute as discussed in this study is based on the RCOG guidelines. The system is evaluated and validated by experts based on their expert opinions and was compared with the CTG feature extraction and classification algorithms developed using MATLAB. © Copyright 2022 Al-yousif et al.
PeerJ Inc.
23765992
English
Article
All Open Access; Gold Open Access; Green Open Access
author Al-yousif S.; Najm I.A.; Talab H.S.; Al Qahtani N.H.; Alfiras M.; Al-Rawi O.Y.M.; Al-Dayyeni W.S.; Alrawi A.A.A.; Mnati M.J.; Jarrar M.; Ghabban F.; Al-Shareefi N.A.; Jaber M.M.; Saleh A.H.; Tahir N.M.; Najim H.T.; Taher M.
spellingShingle Al-yousif S.; Najm I.A.; Talab H.S.; Al Qahtani N.H.; Alfiras M.; Al-Rawi O.Y.M.; Al-Dayyeni W.S.; Alrawi A.A.A.; Mnati M.J.; Jarrar M.; Ghabban F.; Al-Shareefi N.A.; Jaber M.M.; Saleh A.H.; Tahir N.M.; Najim H.T.; Taher M.
Intrapartum cardiotocography trace pattern pre-processing, features extraction and fetal health condition diagnoses based on RCOG guideline
author_facet Al-yousif S.; Najm I.A.; Talab H.S.; Al Qahtani N.H.; Alfiras M.; Al-Rawi O.Y.M.; Al-Dayyeni W.S.; Alrawi A.A.A.; Mnati M.J.; Jarrar M.; Ghabban F.; Al-Shareefi N.A.; Jaber M.M.; Saleh A.H.; Tahir N.M.; Najim H.T.; Taher M.
author_sort Al-yousif S.; Najm I.A.; Talab H.S.; Al Qahtani N.H.; Alfiras M.; Al-Rawi O.Y.M.; Al-Dayyeni W.S.; Alrawi A.A.A.; Mnati M.J.; Jarrar M.; Ghabban F.; Al-Shareefi N.A.; Jaber M.M.; Saleh A.H.; Tahir N.M.; Najim H.T.; Taher M.
title Intrapartum cardiotocography trace pattern pre-processing, features extraction and fetal health condition diagnoses based on RCOG guideline
title_short Intrapartum cardiotocography trace pattern pre-processing, features extraction and fetal health condition diagnoses based on RCOG guideline
title_full Intrapartum cardiotocography trace pattern pre-processing, features extraction and fetal health condition diagnoses based on RCOG guideline
title_fullStr Intrapartum cardiotocography trace pattern pre-processing, features extraction and fetal health condition diagnoses based on RCOG guideline
title_full_unstemmed Intrapartum cardiotocography trace pattern pre-processing, features extraction and fetal health condition diagnoses based on RCOG guideline
title_sort Intrapartum cardiotocography trace pattern pre-processing, features extraction and fetal health condition diagnoses based on RCOG guideline
publishDate 2022
container_title PeerJ Computer Science
container_volume 8
container_issue
doi_str_mv 10.7717/PEERJ-CS.1050
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85138094254&doi=10.7717%2fPEERJ-CS.1050&partnerID=40&md5=221a4ff50de4bc7ed13fa01ccf682e1b
description Context: The computerization of both fetal heart rate (FHR) and intelligent classification modeling of the cardiotocograph (CTG) is one of the approaches that are utilized in assisting obstetricians in conducting initial interpretation based on (CTG) analysis. CTG tracing interpretation is crucial for the monitoring of the fetal status during weeks into the pregnancy and childbirth. Most contemporary studies rely on computer-assisted fetal heart rate (FHR) feature extraction and CTG categorization to determine the best precise diagnosis for tracking fetal health during pregnancy. Furthermore, through the utilization of a computer-assisted fetal monitoring system, the FHR patterns can be precisely detected and categorized. Objective: The goal of this project is to create a reliable feature extraction algorithm for the FHR as well as a systematic and viable classifier for the CTG through the utilization of the MATLAB platform, all the while adhering to the recognized Royal College of Obstetricians and Gynecologists (RCOG) recommendations. Method: The compiled CTG data from spiky artifacts were cleaned by a specifically created application and compensated for missing data using the guidelines provided by RCOG and the MATLAB toolbox after the implemented data has been processed and the FHR fundamental features have been extracted, for example, the baseline, acceleration, deceleration, and baseline variability. This is followed by the classification phase based on the MATLAB environment. Next, using the guideline provided by the RCOG, the signals patterns of CTG were classified into three categories specifically as normal, abnormal (suspicious), or pathological. Furthermore, to ensure the effectiveness of the created computerized procedure and confirm the robustness of the method, the visual interpretation performed by five obstetricians is compared with the results utilizing the computerized version for the 150 CTG signals. Results: The attained CTG signal categorization results revealed that there is variability, particularly a trivial dissimilarity of approximately (+/−4 and 6) beats per minute (b.p.m.). It was demonstrated that obstetricians’ observations coincide with algorithms based on deceleration type and number, except for acceleration values that differ by up to (+/−4). Discussion: The results obtained based on CTG interpretation showed that the utilization of the computerized approach employed in infirmaries and home care services for pregnant women is indeed suitable. Conclusions: The classification based on CTG that was used for the interpretation of the FHR attribute as discussed in this study is based on the RCOG guidelines. The system is evaluated and validated by experts based on their expert opinions and was compared with the CTG feature extraction and classification algorithms developed using MATLAB. © Copyright 2022 Al-yousif et al.
publisher PeerJ Inc.
issn 23765992
language English
format Article
accesstype All Open Access; Gold Open Access; Green Open Access
record_format scopus
collection Scopus
_version_ 1809677595302690816