Identification of blood-based transcriptomics biomarkers for Alzheimer's disease using statistical and machine learning classifier
Alzheimer's disease (AD) is a neurodegenerative disorder that can be characterised by the gradual progression of memory loss, impairment of cognitive function, and progressive disability. This study aims to find the potential transcriptomics biomarkers that elucidate AD patients in Malaysia. Th...
Published in: | Informatics in Medicine Unlocked |
---|---|
Main Author: | Abdullah M.N.; Wah Y.B.; Abdul Majeed A.B.; Zakaria Y.; Shaadan N. |
Format: | Article |
Language: | English |
Published: |
Elsevier Ltd
2022
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85138033436&doi=10.1016%2fj.imu.2022.101083&partnerID=40&md5=3e96f501effffc42fe3e202d2643d02b |
Similar Items
-
An evaluation of nature-inspired optimization algorithms and machine learning classifiers for electricity fraud prediction
by: Kamaruddin A.S.; Hadrawi M.F.; Wah Y.B.; Aliman S.
Published: (2023) -
Formula for improved prediction on susceptibility of Alzheimer's disease based on biomarkers with the addition of its associated risk factors
by: Razak H.A.; Majeed A.B.A.; Hamzah M.K.; Hashim H.; Hamzah N.R.
Published: (2009) -
An impedimetric micro-immunosensing assay to detect Alzheimer's disease biomarker: Aβ40
by: Zakaria N.; Ramli M.Z.; Ramasamy K.; Meng L.S.; Yean C.Y.; Banga Singh K.K.; Zain Z.M.; Low K.-F.
Published: (2018) -
Comparison of ensemble hybrid sampling with bagging and boosting machine learning approach for imbalanced data
by: Malek N.H.A.; Yaacob W.F.W.; Wah Y.B.; Md Nasir S.A.; Shaadan N.; Indratno S.W.
Published: (2023) -
Differential gene expression of blood-based ABCA9, CNOT8, SESN1, UCP3, MAP2K1 and DDIT4 in Alzheimer’s disease
by: Samsudin A.Z.; Ramasamy K.; Lim S.M.; Chin A.V.; Tan M.P.; Kamaruzzaman S.B.; Ibrahim B.; Majeed A.B.A.
Published: (2023)