Release behavior and cytotoxicity of captopril-intercalated layered double hydroxide for an antihypertensive drug delivery system

Intercalation of an antihypertensive drug, captopril (CPL) into zinc–aluminum-layered (ZAL) double hydroxide carrier was successfully accomplished via co-precipitation method. The resulting material was investigated by powder X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimet...

詳細記述

書誌詳細
出版年:Journal of Porous Materials
第一著者: Jadam M.L.; Jubri Z.; Sarijo S.H.
フォーマット: 論文
言語:English
出版事項: Springer 2023
オンライン・アクセス:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137438305&doi=10.1007%2fs10934-022-01333-y&partnerID=40&md5=75938b3daa28293a31b8b1c28c71003e
その他の書誌記述
要約:Intercalation of an antihypertensive drug, captopril (CPL) into zinc–aluminum-layered (ZAL) double hydroxide carrier was successfully accomplished via co-precipitation method. The resulting material was investigated by powder X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric and differential thermogravimetric (TGA/DTG) analysis, carbon, hydrogen, nitrogen, and sulfur (CHNS) analysis, field emission scanning electron microscopy, and accelerated surface area and porosity (ASAP) analysis. High loading percentage of CPL (61.6% [w/w]) in zinc–aluminum–captopril-layered double hydroxide (ZAC) with an interlayer spacing of 9.7 Å suggested the successful intercalation of CPL into the ZAL interlayer. Release percentages of the drug into Na3PO4, Na2CO3, and NaCl solutions are 48%, 30%, and 24%, respectively. Pseudo-second order kinetic model with correlation coefficient, r2 > 0.9 best defined the release behavior of CPL from ZAC nanocomposite into the aqueous media. Cytotoxicity study reveals lower toxic nature of ZAC nanohybrid (IC50 > 200 µg/mL) compared to pristine CPL drug (IC50 < 200 µg/mL) when tested on HUVEC and 3T3 cells. For the work described in this research, the organic-inorganic hybrid nanocomposite, ZAC could have good application in slow releases formulation of the drug delivery system. © 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
ISSN:13802224
DOI:10.1007/s10934-022-01333-y