Topology Optimization of an Engine Mounting Bracket
Engine mounting system is an essential component to a vehicle in providing the isolation of vibration and noise which are generated by the engine. While various system designs have been studied for improvements, less attention were given to study the effects of vibrational load to subcomponents of t...
Published in: | International Journal of Emerging Technology and Advanced Engineering |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
IJETAE Publication House
2022
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85135284389&doi=10.46338%2fijetae0722_17&partnerID=40&md5=b85b5ef040fe69676cab791d6a08a112 |
id |
2-s2.0-85135284389 |
---|---|
spelling |
2-s2.0-85135284389 Ma'arof M.I.N.; Husain H.; Saedon J.B.; Nor N.H.M.; Meo M.S.; Chala G.T.; Wahab M.A. Topology Optimization of an Engine Mounting Bracket 2022 International Journal of Emerging Technology and Advanced Engineering 12 7 10.46338/ijetae0722_17 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85135284389&doi=10.46338%2fijetae0722_17&partnerID=40&md5=b85b5ef040fe69676cab791d6a08a112 Engine mounting system is an essential component to a vehicle in providing the isolation of vibration and noise which are generated by the engine. While various system designs have been studied for improvements, less attention were given to study the effects of vibrational load to subcomponents of the mounting system - for example: the engine bracket. At high frequency working condition, the engine bracket may experience fatigue failure due to cumulative vibrational loading. Henceforth, any efforts to further reduce the structural weight of the said brackets may degrade its strength and this may lead to catastrophic result. This study aimed to enhance the mechanical property of an engine-mounting bracket with respect to cyclic load by means of weight-reduction topology optimization. An actual engine-mounting bracket under vibrational load transmitted was modeled and analyzed using two different computer aided design software. An improved design of engine mounting bracket was modeled by reducing its total weight via the use of HyperWorks. In conclusion, this study has discovered an incremental of stress concentration area across the bracket when predetermined load is applied to the weight-reduced engine bracket. © 2022 IJETAE Publication House. All rights reserved. IJETAE Publication House 22502459 English Article All Open Access; Bronze Open Access |
author |
Ma'arof M.I.N.; Husain H.; Saedon J.B.; Nor N.H.M.; Meo M.S.; Chala G.T.; Wahab M.A. |
spellingShingle |
Ma'arof M.I.N.; Husain H.; Saedon J.B.; Nor N.H.M.; Meo M.S.; Chala G.T.; Wahab M.A. Topology Optimization of an Engine Mounting Bracket |
author_facet |
Ma'arof M.I.N.; Husain H.; Saedon J.B.; Nor N.H.M.; Meo M.S.; Chala G.T.; Wahab M.A. |
author_sort |
Ma'arof M.I.N.; Husain H.; Saedon J.B.; Nor N.H.M.; Meo M.S.; Chala G.T.; Wahab M.A. |
title |
Topology Optimization of an Engine Mounting Bracket |
title_short |
Topology Optimization of an Engine Mounting Bracket |
title_full |
Topology Optimization of an Engine Mounting Bracket |
title_fullStr |
Topology Optimization of an Engine Mounting Bracket |
title_full_unstemmed |
Topology Optimization of an Engine Mounting Bracket |
title_sort |
Topology Optimization of an Engine Mounting Bracket |
publishDate |
2022 |
container_title |
International Journal of Emerging Technology and Advanced Engineering |
container_volume |
12 |
container_issue |
7 |
doi_str_mv |
10.46338/ijetae0722_17 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85135284389&doi=10.46338%2fijetae0722_17&partnerID=40&md5=b85b5ef040fe69676cab791d6a08a112 |
description |
Engine mounting system is an essential component to a vehicle in providing the isolation of vibration and noise which are generated by the engine. While various system designs have been studied for improvements, less attention were given to study the effects of vibrational load to subcomponents of the mounting system - for example: the engine bracket. At high frequency working condition, the engine bracket may experience fatigue failure due to cumulative vibrational loading. Henceforth, any efforts to further reduce the structural weight of the said brackets may degrade its strength and this may lead to catastrophic result. This study aimed to enhance the mechanical property of an engine-mounting bracket with respect to cyclic load by means of weight-reduction topology optimization. An actual engine-mounting bracket under vibrational load transmitted was modeled and analyzed using two different computer aided design software. An improved design of engine mounting bracket was modeled by reducing its total weight via the use of HyperWorks. In conclusion, this study has discovered an incremental of stress concentration area across the bracket when predetermined load is applied to the weight-reduced engine bracket. © 2022 IJETAE Publication House. All rights reserved. |
publisher |
IJETAE Publication House |
issn |
22502459 |
language |
English |
format |
Article |
accesstype |
All Open Access; Bronze Open Access |
record_format |
scopus |
collection |
Scopus |
_version_ |
1809677891590422528 |