Classification of Brain Tumors on MRI Images Using DenseNet and Support Vector Machine

The brain is a vital organ in the human body, performing various functions. The brain has always played a major role in the processing of sensory information, the production of muscular activity, and the performance of high-level cognitive functions. Among the most prevalent diseases of the brain is...

Full description

Bibliographic Details
Published in:International Journal on Informatics Visualization
Main Author: Minarno A.E.; Kantomo I.S.; Sumadi F.D.S.; Nugroho H.A.; Ibrahim Z.
Format: Article
Language:English
Published: Politeknik Negeri Padang 2022
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85133700166&doi=10.30630%2fjoiv.6.2.991&partnerID=40&md5=3d04c3486831d3c0814e9f62bb98d065
id 2-s2.0-85133700166
spelling 2-s2.0-85133700166
Minarno A.E.; Kantomo I.S.; Sumadi F.D.S.; Nugroho H.A.; Ibrahim Z.
Classification of Brain Tumors on MRI Images Using DenseNet and Support Vector Machine
2022
International Journal on Informatics Visualization
6
2
10.30630/joiv.6.2.991
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85133700166&doi=10.30630%2fjoiv.6.2.991&partnerID=40&md5=3d04c3486831d3c0814e9f62bb98d065
The brain is a vital organ in the human body, performing various functions. The brain has always played a major role in the processing of sensory information, the production of muscular activity, and the performance of high-level cognitive functions. Among the most prevalent diseases of the brain is the development of aberrant tissue in brain cells, which results in the formation of brain tumors. According to data from the International Agency for Research on Cancer (IARC), more than 124,000 people worldwide were diagnosed with brain tumors in 2014, and more than 97,000 people died due to the condition. Current research indicates that magnetic resonance imaging (MRI) is the most effective means of detecting brain cancers. Because brain tumors are associated with significant mortality risk, a large number of brain tumor MRI imaging datasets were used in this research to detect brain cancers using deep learning techniques. To classify three forms of brain tumors, including glioma, meningioma, and pituitary, a deep learning model called DenseNet 201 paired with Support Vector Machines (SVM) was employed in this work included three types of brain tumors. Based on the results of the tests that were conducted, the best accuracy results obtained in this study were 99.65 percent, with a comparison ratio of 80 percent for training data and 20 percent for testing data, oversampled with the SMOTE method, with the best accuracy results obtained in this study being 99.65 percent. © 2022, Politeknik Negeri Padang. All rights reserved.
Politeknik Negeri Padang
25499904
English
Article
All Open Access; Gold Open Access
author Minarno A.E.; Kantomo I.S.; Sumadi F.D.S.; Nugroho H.A.; Ibrahim Z.
spellingShingle Minarno A.E.; Kantomo I.S.; Sumadi F.D.S.; Nugroho H.A.; Ibrahim Z.
Classification of Brain Tumors on MRI Images Using DenseNet and Support Vector Machine
author_facet Minarno A.E.; Kantomo I.S.; Sumadi F.D.S.; Nugroho H.A.; Ibrahim Z.
author_sort Minarno A.E.; Kantomo I.S.; Sumadi F.D.S.; Nugroho H.A.; Ibrahim Z.
title Classification of Brain Tumors on MRI Images Using DenseNet and Support Vector Machine
title_short Classification of Brain Tumors on MRI Images Using DenseNet and Support Vector Machine
title_full Classification of Brain Tumors on MRI Images Using DenseNet and Support Vector Machine
title_fullStr Classification of Brain Tumors on MRI Images Using DenseNet and Support Vector Machine
title_full_unstemmed Classification of Brain Tumors on MRI Images Using DenseNet and Support Vector Machine
title_sort Classification of Brain Tumors on MRI Images Using DenseNet and Support Vector Machine
publishDate 2022
container_title International Journal on Informatics Visualization
container_volume 6
container_issue 2
doi_str_mv 10.30630/joiv.6.2.991
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85133700166&doi=10.30630%2fjoiv.6.2.991&partnerID=40&md5=3d04c3486831d3c0814e9f62bb98d065
description The brain is a vital organ in the human body, performing various functions. The brain has always played a major role in the processing of sensory information, the production of muscular activity, and the performance of high-level cognitive functions. Among the most prevalent diseases of the brain is the development of aberrant tissue in brain cells, which results in the formation of brain tumors. According to data from the International Agency for Research on Cancer (IARC), more than 124,000 people worldwide were diagnosed with brain tumors in 2014, and more than 97,000 people died due to the condition. Current research indicates that magnetic resonance imaging (MRI) is the most effective means of detecting brain cancers. Because brain tumors are associated with significant mortality risk, a large number of brain tumor MRI imaging datasets were used in this research to detect brain cancers using deep learning techniques. To classify three forms of brain tumors, including glioma, meningioma, and pituitary, a deep learning model called DenseNet 201 paired with Support Vector Machines (SVM) was employed in this work included three types of brain tumors. Based on the results of the tests that were conducted, the best accuracy results obtained in this study were 99.65 percent, with a comparison ratio of 80 percent for training data and 20 percent for testing data, oversampled with the SMOTE method, with the best accuracy results obtained in this study being 99.65 percent. © 2022, Politeknik Negeri Padang. All rights reserved.
publisher Politeknik Negeri Padang
issn 25499904
language English
format Article
accesstype All Open Access; Gold Open Access
record_format scopus
collection Scopus
_version_ 1809678025960194048