Edge Irregular Reflexive Labeling for Some Classes of Plane Graphs
For a graph G, we define a total k-labeling φ as a combination of an edge labeling φ e(x) {1, 2,…, ke} and a vertex labeling φv(x) {0, 2,…, 2kv}, such that φ(x) = φpv (x) if x (Formula presented) V(G) and φ(x) = φe(x) if x (Formula presented) E(G), where k = max {ke, 2kv}. The total k-labeling p is...
Published in: | Malaysian Journal of Mathematical Sciences |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Universiti Putra Malaysia
2022
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129677671&partnerID=40&md5=37d2a048084795a5cedba8247a5637fe |
id |
2-s2.0-85129677671 |
---|---|
spelling |
2-s2.0-85129677671 Yoong K.K.; Hasni R.; Lau G.C.; Irfan M. Edge Irregular Reflexive Labeling for Some Classes of Plane Graphs 2022 Malaysian Journal of Mathematical Sciences 16 1 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129677671&partnerID=40&md5=37d2a048084795a5cedba8247a5637fe For a graph G, we define a total k-labeling φ as a combination of an edge labeling φ e(x) {1, 2,…, ke} and a vertex labeling φv(x) {0, 2,…, 2kv}, such that φ(x) = φpv (x) if x (Formula presented) V(G) and φ(x) = φe(x) if x (Formula presented) E(G), where k = max {ke, 2kv}. The total k-labeling p is called an edge irregular reflexive k-labeling of G, if for every two edges xy, x'y' of G, one has wt(xy) = wt(x'y'), where wt(xy) = φv (x) + φe(xy) + φv (y). The smallest value of k for which such labeling exists is called a reflexive edge strength of G. In this paper, we study the edge irregular reflexive labeling on plane graphs and determine its reflexive edge strength. © 2022. All Rights Reserved. Universiti Putra Malaysia 18238343 English Article |
author |
Yoong K.K.; Hasni R.; Lau G.C.; Irfan M. |
spellingShingle |
Yoong K.K.; Hasni R.; Lau G.C.; Irfan M. Edge Irregular Reflexive Labeling for Some Classes of Plane Graphs |
author_facet |
Yoong K.K.; Hasni R.; Lau G.C.; Irfan M. |
author_sort |
Yoong K.K.; Hasni R.; Lau G.C.; Irfan M. |
title |
Edge Irregular Reflexive Labeling for Some Classes of Plane Graphs |
title_short |
Edge Irregular Reflexive Labeling for Some Classes of Plane Graphs |
title_full |
Edge Irregular Reflexive Labeling for Some Classes of Plane Graphs |
title_fullStr |
Edge Irregular Reflexive Labeling for Some Classes of Plane Graphs |
title_full_unstemmed |
Edge Irregular Reflexive Labeling for Some Classes of Plane Graphs |
title_sort |
Edge Irregular Reflexive Labeling for Some Classes of Plane Graphs |
publishDate |
2022 |
container_title |
Malaysian Journal of Mathematical Sciences |
container_volume |
16 |
container_issue |
1 |
doi_str_mv |
|
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129677671&partnerID=40&md5=37d2a048084795a5cedba8247a5637fe |
description |
For a graph G, we define a total k-labeling φ as a combination of an edge labeling φ e(x) {1, 2,…, ke} and a vertex labeling φv(x) {0, 2,…, 2kv}, such that φ(x) = φpv (x) if x (Formula presented) V(G) and φ(x) = φe(x) if x (Formula presented) E(G), where k = max {ke, 2kv}. The total k-labeling p is called an edge irregular reflexive k-labeling of G, if for every two edges xy, x'y' of G, one has wt(xy) = wt(x'y'), where wt(xy) = φv (x) + φe(xy) + φv (y). The smallest value of k for which such labeling exists is called a reflexive edge strength of G. In this paper, we study the edge irregular reflexive labeling on plane graphs and determine its reflexive edge strength. © 2022. All Rights Reserved. |
publisher |
Universiti Putra Malaysia |
issn |
18238343 |
language |
English |
format |
Article |
accesstype |
|
record_format |
scopus |
collection |
Scopus |
_version_ |
1809677892835082240 |